Suppr超能文献

在难民环境中克服健康和移民数据电子记录碎片化的分母问题:基于预测的方法。

Overcoming denominator problems in refugee settings with fragmented electronic records for health and immigration data: a prediction-based approach.

机构信息

Institute of Medical Biometry, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.

Section Health Equity Studies and Migration, Department of General Practice and Health Services Research, Heidelberg University Hospital, 69120, Heidelberg, Germany.

出版信息

BMC Med Res Methodol. 2024 Apr 1;24(1):81. doi: 10.1186/s12874-024-02204-7.

Abstract

BACKGROUND

Epidemiological studies in refugee settings are often challenged by the denominator problem, i.e. lack of population at risk data. We develop an empirical approach to address this problem by assessing relationships between occupancy data in refugee centres, number of refugee patients in walk-in clinics, and diseases of the digestive system.

METHODS

Individual-level patient data from a primary care surveillance system (PriCarenet) was matched with occupancy data retrieved from immigration authorities. The three relationships were analysed using regression models, considering age, sex, and type of centre. Then predictions for the respective data category not available in each of the relationships were made. Twenty-one German on-site health care facilities in state-level registration and reception centres participated in the study, covering the time period from November 2017 to July 2021.

RESULTS

445 observations ("centre-months") for patient data from electronic health records (EHR, 230 mean walk-in clinics visiting refugee patients per month and centre; standard deviation sd: 202) of a total of 47.617 refugee patients were available, 215 for occupancy data (OCC, mean occupancy of 348 residents, sd: 287), 147 for both (matched), leaving 270 observations without occupancy (EHR-unmatched) and 40 without patient data (OCC-unmatched). The incidence of diseases of the digestive system, using patients as denominators in the different sub-data sets were 9.2% (sd: 5.9) in EHR, 8.8% (sd: 5.1) when matched, 9.6% (sd: 6.4) in EHR- and 12% (sd 2.9) in OCC-unmatched. Using the available or predicted occupancy as denominator yielded average incidence estimates (per centre and month) of 4.7% (sd: 3.2) in matched data, 4.8% (sd: 3.3) in EHR- and 7.4% (sd: 2.7) in OCC-unmatched.

CONCLUSIONS

By modelling the ratio between patient and occupancy numbers in refugee centres depending on sex and age, as well as on the total number of patients or occupancy, the denominator problem in health monitoring systems could be mitigated. The approach helped to estimate the missing component of the denominator, and to compare disease frequency across time and refugee centres more accurately using an empirically grounded prediction of disease frequency based on demographic and centre typology. This avoided over-estimation of disease frequency as opposed to the use of patients as denominators.

摘要

背景

在难民环境中进行的流行病学研究常常受到分母问题的挑战,即缺乏风险人群数据。我们通过评估难民中心入住数据、门诊就诊难民患者数量和消化系统疾病之间的关系,开发了一种经验方法来解决这个问题。

方法

从初级保健监测系统(PriCarenet)获得的个体患者数据与移民局获取的入住数据进行匹配。使用回归模型分析这三种关系,同时考虑年龄、性别和中心类型。然后,根据每种关系中不可用的相应数据类别进行预测。21 家德国现场医疗保健机构参与了这项研究,涵盖了 2017 年 11 月至 2021 年 7 月期间的数据。

结果

共有 47617 名难民患者的电子健康记录(EHR)患者数据(230 名平均每月到门诊就诊的难民患者/中心;标准偏差(sd):202)、215 名入住数据(OCC,平均入住人数 348 人,sd:287)和 147 名两者均有数据(匹配)可用,270 个观察结果没有入住数据(EHR 不匹配),40 个观察结果没有患者数据(OCC 不匹配)。在不同的子数据集中,以患者为分母的消化系统疾病发病率为 9.2%(sd:5.9)在 EHR 中,匹配时为 8.8%(sd:5.1),在 EHR-和 12%(sd:2.9)在 OCC 不匹配中。使用可用或预测的入住数据作为分母,在匹配数据中得出的平均发病率估计值(每个中心和每个月)为 4.7%(sd:3.2),在 EHR-和 7.4%(sd:2.7)在 OCC 不匹配中。

结论

通过根据性别和年龄以及患者总数或入住人数来建模难民中心患者和入住人数之间的比例,可以缓解健康监测系统中的分母问题。该方法有助于估计分母缺失的部分,并使用基于人口统计学和中心类型的疾病频率的经验预测,更准确地比较随时间和难民中心的疾病频率。这避免了与使用患者作为分母相比对疾病频率的高估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f47/10983725/90b47901d1b7/12874_2024_2204_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验