Wilson Emma R, Nunes Gustavo Della-Flora, Shen Shichen, Moore Seth, Gawron Joseph, Maxwell Jessica, Syed Umair, Hurley Edward, Lanka Meghana, Qu Jun, Desaubry Laurent, Wrabetz Lawrence, Poitelon Yannick, Feltri M Laura
Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
Department of Clinical Neurosciences, Cambridge University, Cambridge, UK.
bioRxiv. 2024 Mar 20:2024.03.20.585915. doi: 10.1101/2024.03.20.585915.
Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 () results in early and severe defects in peripheral nerve development. Using a proteomic approach , we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show that loss of in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of , a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell . This work develops our understanding of Schwann cell biology, revealing that may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.
施万细胞对于周围神经系统的正常发育和功能至关重要,它们与轴突形成了互利关系。过去的研究强调,一对名为抑制素的蛋白质在施万细胞生物学中起主要作用。抑制素是普遍表达且功能多样的蛋白质。我们之前已经表明,虽然抑制素在施万细胞线粒体中对长期髓鞘维持和轴突健康起着关键作用,但它们在发育过程中也可能存在于施万细胞 - 轴突界面。在这里,我们扩展了这项工作,表明药物介导的抑制素调节会破坏髓鞘形成,并证实施万细胞特异性敲除抑制素2(PHB2)会导致周围神经发育早期出现严重缺陷。使用蛋白质组学方法,我们鉴定出一组候选的PHB2相互作用蛋白,它们根据轴突信号的存在改变与PHB2的相互作用。此外,我们表明小鼠施万细胞中PHB2的缺失会导致增殖无效以及对施万细胞正常成熟所必需的转录因子EGR2(KROX20)、POU3F1(OCT6)和POU3F2(BRN2)的失调。施万细胞特异性缺失与髓鞘形成负调控相关的转录因子,可部分挽救缺乏施万细胞PHB2的小鼠中出现的发育缺陷。这项工作加深了我们对施万细胞生物学的理解,揭示了PHB2可能直接或间接调节周围神经系统正常发育所需转录因子的适时表达,并提出了可能在施万细胞中PHB2介导的轴突信号整合中发挥作用的候选蛋白。