Ocola Paloma L, Dimitrova Ivana, Grinkemeyer Brandon, Guardado-Sanchez Elmer, Đorđević Tamara, Samutpraphoot Polnop, Vuletić Vladan, Lukin Mikhail D
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett. 2024 Mar 15;132(11):113601. doi: 10.1103/PhysRevLett.132.113601.
Coherent control of Rydberg atoms near dielectric surfaces is a major challenge due to the large sensitivity of Rydberg states to electric fields. We demonstrate coherent single-atom operations and two-qubit entanglement as close as 100 μm from a nanophotonic device. Using the individual atom control enabled by optical tweezers to study the spatial and temporal properties of the electric field from the surface, we employ dynamical decoupling techniques to characterize and cancel the electric-field noise with submicrosecond temporal resolution. We further use entanglement-assisted sensing to accurately map magnitude and direction of electric-field gradients on a micrometer scale. Our observations open a path for integration of Rydberg arrays with micro- and nanoscale devices for applications in quantum networking and quantum information science.
由于里德堡态对电场极为敏感,在介电表面附近对里德堡原子进行相干控制是一项重大挑战。我们展示了在距离纳米光子器件仅100微米处实现的相干单原子操作和两比特纠缠。利用光镊实现的单个原子控制来研究表面电场的空间和时间特性,我们采用动态解耦技术以亚微秒时间分辨率表征并消除电场噪声。我们还进一步利用纠缠辅助传感在微米尺度上精确绘制电场梯度的大小和方向。我们的观察结果为将里德堡阵列与微纳尺度器件集成以用于量子网络和量子信息科学应用开辟了一条道路。