Shadmany Danial, Kumar Aishwarya, Soper Anna, Palm Lukas, Yin Chuan, Ando Henry, Li Bowen, Taneja Lavanya, Jaffe Matt, David Schuster, Simon Jon
Department of Physics, Stanford University, Stanford, CA, USA.
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
Sci Adv. 2025 Feb 28;11(9):eads8171. doi: 10.1126/sciadv.ads8171. Epub 2025 Feb 26.
From fundamental studies of light-matter interaction to applications in quantum networking and sensing, cavity quantum electrodynamics (QED) provides a toolbox to control interactions between atoms and photons. The coherence of interactions is determined by the single-pass atomic absorption and number of photon round-trips. Reducing the cavity loss has enabled resonators supporting 1 million roundtrips but with limited material choices and increased alignment sensitivity. Here, we present a high-numerical aperture, lens-based resonator that pushes the single-atom single-photon absorption probability near its fundamental limit, reducing the mode size at the atom to order λ. This resonator provides a single-atom cooperativity of 1.6 in a cavity where the light circulates ∼10 times. We load single Rb atoms into this cavity, observe strong coupling, and demonstrate cavity-enhanced atom detection with fidelity of 99.55(6)% and survival of 99.89(4)% in 130 μs. Introducing intracavity imaging systems will enable cavity arrays compatible with Rydberg atom array computing technologies, expanding the applicability of the cavity QED toolbox.
从光与物质相互作用的基础研究到量子网络和传感中的应用,腔量子电动力学(QED)提供了一个控制原子与光子之间相互作用的工具箱。相互作用的相干性由单程原子吸收和光子往返次数决定。降低腔损耗使得谐振器能够支持100万次往返,但材料选择有限且对准灵敏度增加。在这里,我们展示了一种基于透镜的高数值孔径谐振器,它将单原子单光子吸收概率推近其基本极限,将原子处的模式尺寸减小到λ量级。这种谐振器在光循环约10次的腔中提供了1.6的单原子协同性。我们将单个铷原子加载到这个腔中,观察到强耦合,并展示了腔增强原子检测,在130微秒内保真度为99.55(6)%,存活率为99.89(4)%。引入腔内成像系统将使腔阵列与里德堡原子阵列计算技术兼容,扩展腔QED工具箱的适用性。