Suppr超能文献

张量网络消息传递

Tensor Network Message Passing.

作者信息

Wang Yijia, Zhang Yuwen Ebony, Pan Feng, Zhang Pan

机构信息

CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Phys Rev Lett. 2024 Mar 15;132(11):117401. doi: 10.1103/PhysRevLett.132.117401.

Abstract

When studying interacting systems, computing their statistical properties is a fundamental problem in various fields such as physics, applied mathematics, and machine learning. However, this task can be quite challenging due to the exponential growth of the state space as the system size increases. Many standard methods have significant weaknesses. For instance, message-passing algorithms can be inaccurate and even fail to converge due to short loops, while tensor network methods can have exponential computational complexity in large graphs due to long loops. In this Letter, we propose a new method called "tensor network message passing." This approach allows us to compute local observables like marginal probabilities and correlations by combining the strengths of tensor networks in contracting small subgraphs with many short loops and the strengths of message-passing methods in globally sparse graphs, thus addressing the crucial weaknesses of both approaches. Our algorithm is exact for systems that are globally treelike and locally dense-connected when the dense local graphs have a limited tree width. We have conducted numerical experiments on synthetic and real-world graphs to compute magnetizations of Ising models and spin glasses, and have demonstrated the superiority of our approach over standard belief propagation and the recently proposed loopy message-passing algorithm. In addition, we discuss the potential applications of our method in inference problems in networks, combinatorial optimization problems, and decoding problems in quantum error correction.

摘要

在研究相互作用系统时,计算其统计特性是物理学、应用数学和机器学习等各个领域的一个基本问题。然而,由于随着系统规模的增加状态空间呈指数增长,这项任务可能极具挑战性。许多标准方法都存在显著弱点。例如,消息传递算法可能不准确,甚至由于短环而无法收敛,而张量网络方法在大图中由于长环可能具有指数级的计算复杂度。在本快报中,我们提出了一种名为“张量网络消息传递”的新方法。这种方法使我们能够通过结合张量网络在收缩具有许多短环的小子图方面的优势以及消息传递方法在全局稀疏图方面的优势来计算局部可观测量,如边缘概率和相关性,从而解决了这两种方法的关键弱点。当密集局部图的树宽有限时,我们的算法对于全局树状且局部密集连接的系统是精确的。我们对合成图和真实世界的图进行了数值实验,以计算伊辛模型和自旋玻璃的磁化强度,并证明了我们的方法优于标准信念传播和最近提出的循环消息传递算法。此外,我们还讨论了我们的方法在网络推理问题、组合优化问题和量子纠错中的解码问题中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验