Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
Department of Structure Biology and Biomolecular Engineering, Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
Int Immunol. 2024 Jul 13;36(8):405-412. doi: 10.1093/intimm/dxae017.
Immunoglobulin G (IgG) molecules that bind antigens on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single-molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centred on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.
免疫球蛋白 G(IgG)分子自发与靶细胞膜上的抗原结合形成六聚体环,从而募集 C1 启动补体途径。然而,我们之前的报告表明,一种缺乏 Cγ1 结构域的小鼠 IgG 突变体通过其 CL 结构域与 C1q 的单体相互作用以及 Fc 独立于抗原存在激活途径。在这项研究中,我们研究了 C1q 与人 CL 同工型之间的潜在相互作用。使用高速原子力显微镜进行的定量单分子观察表明,人 Cκ 与小鼠 Cκ 具有相当的 C1q 结合能力,超过了 Cλ 同工型,Cλ 同工型的等电点高于 Cκ 结构域。核磁共振和突变实验表明,人 Cκ 和小鼠 Cκ 结构域共享 C1q 的共同主要结合位点,该位点位于 Glu194 周围,该残基在 Cκ 结构域中保守,但在 Cλ 结构域中不存在。此外,具有高等电点的 Cγ1 结构域会引起 C1q 头部的静电排斥,并阻碍 Fab 中 Cκ 结构域的 C1q 相互作用可调节性。Cγ1 结构域的缺失被认为消除了这些因素,从而促进了 Cκ 与 C1q 的相互作用,在没有抗原的情况下,可能导致补体途径在体内不受控制地激活。然而,这项研究强调了 Fab 中存在潜在的 C1q 结合亚基,为抗体工程提供了有希望的靶点,以完善治疗性抗体设计。