Suppr超能文献

利用高质子/离子选择性聚酰胺薄膜从酸性矿山排水中收集能量。

Energy harvesting from acid mine drainage using a highly proton/ion-selective thin polyamide film.

作者信息

Zhou Shenghua, Mei Ying, Yang Wulin, Jiang Chenxiao, Guo Hao, Feng Shien-Ping, Tang Chuyang Y

机构信息

Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China.

Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR China.

出版信息

Water Res. 2024 May 15;255:121530. doi: 10.1016/j.watres.2024.121530. Epub 2024 Mar 28.

Abstract

A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H-conductive films. Polyamide films with controllable thickness achieved much higher H conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H/Ca selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.

摘要

酸性矿山排水(AMD)与碱性中和溶液之间存在巨大的化学势差,而这在传统的AMD中和过程中被浪费了。本研究首次报道了通过使用氢离子传导膜对AMD进行可控中和来获取这种化学势能。具有可控厚度的聚酰胺膜实现了比市售阳离子交换膜(CEM)高得多的氢离子传导率。同时,最佳聚酰胺膜具有63.7的优异氢离子/钙离子选择性,比CEM的选择性(0.3)高两个数量级以上。快速质子传输和高质子/离子选择性的综合优势极大地提高了AMD电池的发电能力。功率密度为3.1 W/m²,比商用CEM(0.2 W/m²)高出一个数量级以上。我们的研究提供了一种新的可持续解决方案,既能解决AMD的环境问题,又能实现清洁能源生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验