Suppr超能文献

利用生成式人工智能研究医学影像模型和数据集。

Using generative AI to investigate medical imagery models and datasets.

机构信息

Google, Mountain View, CA, USA.

Google, Mountain View, CA, USA.

出版信息

EBioMedicine. 2024 Apr;102:105075. doi: 10.1016/j.ebiom.2024.105075. Epub 2024 Apr 1.

Abstract

BACKGROUND

AI models have shown promise in performing many medical imaging tasks. However, our ability to explain what signals these models have learned is severely lacking. Explanations are needed in order to increase the trust of doctors in AI-based models, especially in domains where AI prediction capabilities surpass those of humans. Moreover, such explanations could enable novel scientific discovery by uncovering signals in the data that aren't yet known to experts.

METHODS

In this paper, we present a workflow for generating hypotheses to understand which visual signals in images are correlated with a classification model's predictions for a given task. This approach leverages an automatic visual explanation algorithm followed by interdisciplinary expert review. We propose the following 4 steps: (i) Train a classifier to perform a given task to assess whether the imagery indeed contains signals relevant to the task; (ii) Train a StyleGAN-based image generator with an architecture that enables guidance by the classifier ("StylEx"); (iii) Automatically detect, extract, and visualize the top visual attributes that the classifier is sensitive towards. For visualization, we independently modify each of these attributes to generate counterfactual visualizations for a set of images (i.e., what the image would look like with the attribute increased or decreased); (iv) Formulate hypotheses for the underlying mechanisms, to stimulate future research. Specifically, present the discovered attributes and corresponding counterfactual visualizations to an interdisciplinary panel of experts so that hypotheses can account for social and structural determinants of health (e.g., whether the attributes correspond to known patho-physiological or socio-cultural phenomena, or could be novel discoveries).

FINDINGS

To demonstrate the broad applicability of our approach, we present results on eight prediction tasks across three medical imaging modalities-retinal fundus photographs, external eye photographs, and chest radiographs. We showcase examples where many of the automatically-learned attributes clearly capture clinically known features (e.g., types of cataract, enlarged heart), and demonstrate automatically-learned confounders that arise from factors beyond physiological mechanisms (e.g., chest X-ray underexposure is correlated with the classifier predicting abnormality, and eye makeup is correlated with the classifier predicting low hemoglobin levels). We further show that our method reveals a number of physiologically plausible, previously-unknown attributes based on the literature (e.g., differences in the fundus associated with self-reported sex, which were previously unknown).

INTERPRETATION

Our approach enables hypotheses generation via attribute visualizations and has the potential to enable researchers to better understand, improve their assessment, and extract new knowledge from AI-based models, as well as debug and design better datasets. Though not designed to infer causality, importantly, we highlight that attributes generated by our framework can capture phenomena beyond physiology or pathophysiology, reflecting the real world nature of healthcare delivery and socio-cultural factors, and hence interdisciplinary perspectives are critical in these investigations. Finally, we will release code to help researchers train their own StylEx models and analyze their predictive tasks of interest, and use the methodology presented in this paper for responsible interpretation of the revealed attributes.

FUNDING

Google.

摘要

背景

人工智能模型在执行许多医学影像任务方面表现出了很大的潜力。然而,我们解释这些模型学习到的信号的能力却严重不足。需要解释才能增加医生对基于人工智能的模型的信任,特别是在人工智能预测能力超过人类的领域。此外,这种解释可以通过揭示数据中尚未为专家所知的信号来实现新的科学发现。

方法

在本文中,我们提出了一种生成假设的工作流程,以了解图像中的哪些视觉信号与分类模型对给定任务的预测相关。这种方法利用了一种自动视觉解释算法,然后是跨学科的专家审查。我们提出了以下 4 个步骤:(i)训练一个分类器来执行给定的任务,以评估图像中是否确实包含与任务相关的信号;(ii)使用一种能够通过分类器进行指导的架构训练一个基于 StyleGAN 的图像生成器(“StylEx”);(iii)自动检测、提取和可视化分类器敏感的顶级视觉属性。对于可视化,我们独立地修改这些属性中的每一个,以生成一组图像的反事实可视化(即,增加或减少属性后的图像会是什么样子);(iv)为潜在机制形成假设,以激发未来的研究。具体来说,将发现的属性和相应的反事实可视化呈现给跨学科的专家小组,以便假设可以解释健康的社会和结构决定因素(例如,属性是否对应已知的病理生理或社会文化现象,或者是否可能是新的发现)。

结果

为了展示我们方法的广泛适用性,我们在三个医学成像模态-视网膜眼底照片、外眼照片和胸部 X 光片上展示了八个预测任务的结果。我们展示了许多自动学习的属性明显捕捉到临床已知特征的例子(例如,白内障的类型、心脏增大),并展示了自动学习到的与生理机制之外的因素有关的混杂因素(例如,X 光胸片曝光不足与分类器预测异常有关,眼部化妆与分类器预测低血红蛋白水平有关)。我们进一步表明,我们的方法根据文献揭示了一些具有生理合理性的、以前未知的属性(例如,与自我报告的性别相关的眼底差异,这是以前未知的)。

解释

我们的方法通过属性可视化来生成假设,并有可能使研究人员更好地理解、评估和从基于人工智能的模型中提取新知识,以及调试和设计更好的数据集。虽然不是为了推断因果关系,但重要的是,我们强调我们框架生成的属性可以捕捉到超越生理学或病理生理学的现象,反映出医疗保健提供和社会文化因素的现实世界性质,因此跨学科的观点在这些研究中至关重要。最后,我们将发布代码,以帮助研究人员训练自己的 StylEx 模型并分析他们感兴趣的预测任务,并使用本文中提出的方法对揭示的属性进行负责任的解释。

资金来源

谷歌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71c9/10993140/e9344b98179e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验