Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
Eur J Cardiothorac Surg. 2024 Mar 29;65(4). doi: 10.1093/ejcts/ezae132.
Individual patient data (IPD) meta-analyses build upon traditional (aggregate data) meta-analyses by collecting IPD from the individual studies rather than using aggregated summary data. Although both traditional and IPD meta-analyses produce a summary effect estimate, IPD meta-analyses allow for the analysis of data to be performed as a single dataset. This allows for standardization of exposure, outcomes, and analytic methods across individual studies. IPD meta-analyses also allow the utilization of statistical methods typically used in cohort studies, such as multivariable regression, survival analysis, propensity score matching, uniform subgroup and sensitivity analyses, better management of missing data, and incorporation of unpublished data. However, they are more time-intensive, costly, and subject to participation bias. A separate issue relates to the meta-analytic challenges when the proportional hazards assumption is violated. In these instances, alternative methods of reporting time-to-event estimates, such as restricted mean survival time should be used. This statistical primer summarizes key concepts in both scenarios and provides pertinent examples.
个体患者数据(IPD)荟萃分析通过从个体研究中收集 IPD 而不是使用汇总摘要数据,从而建立在传统(汇总数据)荟萃分析之上。尽管传统荟萃分析和 IPD 荟萃分析都产生了汇总效应估计,但 IPD 荟萃分析允许对数据进行单一数据集的分析。这允许在个体研究中对暴露、结局和分析方法进行标准化。IPD 荟萃分析还允许使用通常在队列研究中使用的统计方法,例如多变量回归、生存分析、倾向评分匹配、统一亚组和敏感性分析、更好地处理缺失数据以及纳入未发表的数据。然而,它们更加耗时、昂贵并且容易受到参与偏倚的影响。另一个问题涉及违反比例风险假设时的荟萃分析挑战。在这些情况下,应使用受限平均生存时间等替代方法报告时间事件估计值。本统计入门简要总结了这两种情况下的关键概念,并提供了相关示例。