Radboud Institute for Health Sciences (RIHS), Radboud university medical center, Mailbox 133, P.O. Box 9101, Nijmegen, 6500, HB, The Netherlands.
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, The Netherlands.
BMC Med Res Methodol. 2019 Sep 2;19(1):183. doi: 10.1186/s12874-019-0817-6.
Individual participant data meta-analysis (IPD-MA) is considered the gold standard for investigating subgroup effects. Frequently used regression-based approaches to detect subgroups in IPD-MA are: meta-regression, per-subgroup meta-analysis (PS-MA), meta-analysis of interaction terms (MA-IT), naive one-stage IPD-MA (ignoring potential study-level confounding), and centred one-stage IPD-MA (accounting for potential study-level confounding). Clear guidance on the analyses is lacking and clinical researchers may use approaches with suboptimal efficiency to investigate subgroup effects in an IPD setting. Therefore, our aim is to overview and compare the aforementioned methods, and provide recommendations over which should be preferred.
We conducted a simulation study where we generated IPD of randomised trials and varied the magnitude of subgroup effect (0, 25, 50% relative reduction), between-study treatment effect heterogeneity (none, medium, large), ecological bias (none, quantitative, qualitative), sample size (50,100,200), and number of trials (5,10) for binary, continuous and time-to-event outcomes. For each scenario, we assessed the power, false positive rate (FPR) and bias of aforementioned five approaches.
Naive and centred IPD-MA yielded the highest power, whilst preserving acceptable FPR around the nominal 5% in all scenarios. Centred IPD-MA showed slightly less biased estimates than naïve IPD-MA. Similar results were obtained for MA-IT, except when analysing binary outcomes (where it yielded less power and FPR < 5%). PS-MA showed similar power as MA-IT in non-heterogeneous scenarios, but power collapsed as heterogeneity increased, and decreased even more in the presence of ecological bias. PS-MA suffered from too high FPRs in non-heterogeneous settings and showed biased estimates in all scenarios. Meta-regression showed poor power (< 20%) in all scenarios and completely biased results in settings with qualitative ecological bias.
Our results indicate that subgroup detection in IPD-MA requires careful modelling. Naive and centred IPD-MA performed equally well, but due to less bias of the estimates in the presence of ecological bias, we recommend the latter.
个体参与者数据荟萃分析(IPD-MA)被认为是研究亚组效应的金标准。常用于 IPD-MA 中检测亚组的基于回归的方法有:荟萃回归、亚组荟萃分析(PS-MA)、交互作用项荟萃分析(MA-IT)、朴素的一阶 IPD-MA(忽略潜在的研究水平混杂)和中心化的一阶 IPD-MA(考虑潜在的研究水平混杂)。缺乏关于这些分析的明确指导,临床研究人员可能会使用效率不高的方法来研究 IPD 中的亚组效应。因此,我们的目的是综述和比较上述方法,并提供关于应该优先选择哪种方法的建议。
我们进行了一项模拟研究,生成了随机试验的 IPD,并改变了亚组效应的大小(0、25、50%相对减少)、研究间治疗效果异质性(无、中、大)、生态偏差(无、定量、定性)、样本量(50、100、200)和试验数量(5、10),用于二分类、连续和生存数据。对于每种情况,我们评估了上述五种方法的功效、假阳性率(FPR)和偏差。
朴素和中心化的 IPD-MA 产生了最高的功效,同时在所有情况下保持了可接受的 FPR 接近名义的 5%。中心化的 IPD-MA 显示出比朴素的 IPD-MA 稍微小的偏差估计。MA-IT 得到了类似的结果,除了在分析二分类结果时(其功效较低且 FPR<5%)。PS-MA 在非异质情况下与 MA-IT 具有相似的功效,但随着异质性的增加,功效会崩溃,在存在生态偏差的情况下,功效会进一步降低。PS-MA 在非异质环境中假阳性率过高,在所有情况下均显示出偏差估计。荟萃回归在所有情况下功效都很低(<20%),并且在存在定性生态偏差的情况下完全产生有偏结果。
我们的结果表明,IPD-MA 中的亚组检测需要仔细建模。朴素和中心化的 IPD-MA 表现相当,但由于在存在生态偏差的情况下估计值的偏差较小,因此我们推荐使用后者。