Suppr超能文献

风险模型预测心力衰竭患者死亡风险的性能:在综合卫生系统中的评估。

Performance of risk models to predict mortality risk for patients with heart failure: evaluation in an integrated health system.

机构信息

Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 600, Chicago, IL, 60611, USA.

Bluhm Cardiovascular Institute Center for Artificial Intelligence, Northwestern Medicine, Chicago, IL, USA.

出版信息

Clin Res Cardiol. 2024 Sep;113(9):1343-1354. doi: 10.1007/s00392-024-02433-2. Epub 2024 Apr 2.

Abstract

BACKGROUND

Referral of patients with heart failure (HF) who are at high mortality risk for specialist evaluation is recommended. Yet, most tools for identifying such patients are difficult to implement in electronic health record (EHR) systems.

OBJECTIVE

To assess the performance and ease of implementation of Machine learning Assessment of RisK and EaRly mortality in Heart Failure (MARKER-HF), a machine-learning model that uses structured data that is readily available in the EHR, and compare it with two commonly used risk scores: the Seattle Heart Failure Model (SHFM) and Meta-Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score.

DESIGN

Retrospective, cohort study.

PARTICIPANTS

Data from 6764 adults with HF were abstracted from EHRs at a large integrated health system from 1/1/10 to 12/31/19.

MAIN MEASURES

One-year survival from time of first cardiology or primary care visit was estimated using MARKER-HF, SHFM, and MAGGIC. Discrimination was measured by the area under the receiver operating curve (AUC). Calibration was assessed graphically.

KEY RESULTS

Compared to MARKER-HF, both SHFM and MAGGIC required a considerably larger amount of data engineering and imputation to generate risk score estimates. MARKER-HF, SHFM, and MAGGIC exhibited similar discriminations with AUCs of 0.70 (0.69-0.73), 0.71 (0.69-0.72), and 0.71 (95% CI 0.70-0.73), respectively. All three scores showed good calibration across the full risk spectrum.

CONCLUSIONS

These findings suggest that MARKER-HF, which uses readily available clinical and lab measurements in the EHR and required less imputation and data engineering than SHFM and MAGGIC, is an easier tool to identify high-risk patients in ambulatory clinics who could benefit from referral to a HF specialist.

摘要

背景

建议将高死亡率风险的心力衰竭(HF)患者转介给专家进行评估。然而,大多数用于识别此类患者的工具在电子健康记录(EHR)系统中难以实施。

目的

评估 Machine learning Assessment of RisK and EaRly mortality in Heart Failure(MARKER-HF)的性能和实施难易程度,该模型使用 EHR 中易于获得的结构化数据,将其与两种常用的风险评分进行比较:西雅图心力衰竭模型(SHFM)和荟萃分析全球慢性心力衰竭风险评分(MAGGIC)。

设计

回顾性队列研究。

参与者

从一个大型综合医疗系统的 EHR 中提取了 6764 名 HF 成人的数据,时间范围为 2010 年 1 月 1 日至 2019 年 12 月 31 日。

主要措施

使用 MARKER-HF、SHFM 和 MAGGIC 估计首次就诊时的 1 年生存率。通过接受者操作特征曲线下的面积(AUC)来衡量区分度。通过图形评估校准。

主要结果

与 MARKER-HF 相比,SHFM 和 MAGGIC 需要大量的数据工程和插补来生成风险评分估计。MARKER-HF、SHFM 和 MAGGIC 的 AUC 分别为 0.70(0.69-0.73)、0.71(0.69-0.72)和 0.71(95%CI 0.70-0.73),具有相似的区分度。这三个评分在整个风险谱中都具有良好的校准。

结论

这些发现表明,MARKER-HF 使用 EHR 中易于获得的临床和实验室测量值,比 SHFM 和 MAGGIC 需要更少的插补和数据工程,是一种在门诊诊所中更容易识别高危患者的工具,这些患者可能受益于转介给 HF 专家。

相似文献

1
Performance of risk models to predict mortality risk for patients with heart failure: evaluation in an integrated health system.
Clin Res Cardiol. 2024 Sep;113(9):1343-1354. doi: 10.1007/s00392-024-02433-2. Epub 2024 Apr 2.
3
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
8
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.

本文引用的文献

1
Etiologies and predictors of mortality in an all-comer population of patients with non-ischemic heart failure.
Clin Res Cardiol. 2024 May;113(5):737-749. doi: 10.1007/s00392-023-02354-6. Epub 2024 Jan 15.
2
Are sarcopenia and its individual components linked to all-cause mortality in heart failure? A systematic review and meta-analysis.
Clin Res Cardiol. 2025 May;114(5):532-540. doi: 10.1007/s00392-023-02360-8. Epub 2023 Dec 12.
3
Association of systemic inflammation with shock severity, 30-day mortality, and therapy response in patients with cardiogenic shock.
Clin Res Cardiol. 2024 Feb;113(2):324-335. doi: 10.1007/s00392-023-02336-8. Epub 2023 Nov 20.
4
A machine-learning-based prediction of non-home discharge among acute heart failure patients.
Clin Res Cardiol. 2024 Apr;113(4):522-532. doi: 10.1007/s00392-023-02209-0. Epub 2023 May 3.
5
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease.
Clin Res Cardiol. 2023 Sep;112(9):1263-1277. doi: 10.1007/s00392-023-02193-5. Epub 2023 Apr 1.
6
Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association.
Circulation. 2023 Feb 21;147(8):e93-e621. doi: 10.1161/CIR.0000000000001123. Epub 2023 Jan 25.
7
Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study.
Clin Res Cardiol. 2023 Jun;112(6):815-823. doi: 10.1007/s00392-022-02140-w. Epub 2022 Dec 17.
10
The false hope of current approaches to explainable artificial intelligence in health care.
Lancet Digit Health. 2021 Nov;3(11):e745-e750. doi: 10.1016/S2589-7500(21)00208-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验