Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
BMC Microbiol. 2024 Apr 2;24(1):109. doi: 10.1186/s12866-024-03259-8.
The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS.
In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively.
While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.
目前对肠杆菌科中获得性黏菌素耐药机制的理解主要涉及调控基因发生突变导致上游 PmrAB 和 PhoPQ 双组分系统(TCS)控制的破坏。有趣的是,之前关于大肠杆菌中与黏菌素耐药相关的调控基因的相互作用的研究结果存在冲突,特别是那些涉及 PhoPQ 和 PmrAB TCS 的基因。
在我们的研究中,我们专注于两个临床非 mcr 黏菌素耐药的大肠杆菌菌株 TSAREC02 和 TSAREC03,以更好地了解它们的耐药机制。分析发现,TSAREC02 的 MgrB 缺失(Δ27-45),PmrB 发生取代(G206R、Y222H)。另一方面,TSAREC03 的 PhoP 发生长缺失(Δ84-224),PmrB 发生取代(M1I、L14P、P178S、T235N)。我们采用重组 DNA 技术研究 PhoPQ 和 PmrAB 双组分系统(TCS)之间的相互作用,并检查突变的 phoPQ 和 pmrB 基因对黏菌素最小抑菌浓度(MIC)的影响。我们观察到 TSAREC02 野生型(WT)-mgrB 替换突变体和 TSAREC03 WT-phoP 替换突变体中编码由 PhoPQ TCS 调控的连接蛋白的 pmrD 基因的表达发生显著变化,与各自的亲本菌株相比。然而,反映 PmrAB TCS 活性的 pmrB/pmrA 的表达和黏菌素 MIC 保持不变。相比之下,与亲本菌株相比,TSAREC02 和 TSAREC03 的 pmrB 缺失突变体的黏菌素 MIC 和 pmrB/pmrA 表达水平显著降低。此外,我们能够通过将包含亲本突变 pmrB 的质粒转化回 TSAREC02 和 TSAREC03 突变体,分别恢复黏菌素耐药性和 pmrB/pmrA 的表达。
虽然需要更多来自临床大肠杆菌分离株的数据来验证我们的发现是否可以广泛应用于大肠杆菌种群,但我们的研究阐明了大肠杆菌中涉及黏菌素耐药的不同调控途径相互作用,与其他肠杆菌科物种不同。我们的研究提供的附加信息有助于更深入地了解肠杆菌科内复杂的途径相互作用。