Mikhraliieva Albina, Lima Adriano R S, Jost Cristiane L, Nazarkovsky Michael, Xing Yutao, Zaitsev Volodymyr
Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Marquês de Sao Vicente Street, 225, Rio de Janeiro, RJ, 22451-900, Brazil.
Department of Chemistry, Laboratório de Plataformas Eletroquímicas, The Universidade Federal de Santa Catarina, Florianópolis, SC, CEP 88040-900, Brazil.
Small. 2024 Oct;20(40):e2400650. doi: 10.1002/smll.202400650. Epub 2024 Apr 2.
Holey graphenic nanomaterials with porosity within the basal plane attract significant interest. It is observed that the perforation of graphene can enhance the specific surface area of the nanosheet, ensuring effective wetting and penetration of electrolytes to the electrode surface, facilitating rapid charge transfer, and boosting the electrocatalytic efficacy of the transducers. This study reports the first example of nitrogen-doped holey reduced graphene oxide with a mesoporous morphology of the graphene basal plane (N-MHG). It is shown that N-MHG can be synthesized through a one-step hydrothermal treatment of GO using NH and HO. A straightforward procedure for the purification of N-MHG has also been developed. AFM, TEM, and Raman analyses have revealed that N-MHG possesses a highly mesoporous network structure with a pore size ranging from 10 to 50 nm. X-ray photoelectron spectroscopy data have indicated a partial reduction of the graphene oxide sheets during the etching process but also show a 3-5 times higher content of C═O and O-C═O fragments compared to rGO. This could account for the remarkable stability of the N-MHG aqueous suspension. An electrochemical sensor for dopamine analysis is assembled on a glassy carbon electrode with N-MHG/Nafion membrane and characterized by cyclic voltammetry and electrochemical impedance spectroscopy.
具有基面内孔隙率的多孔石墨烯纳米材料引起了广泛关注。据观察,石墨烯的穿孔可以增加纳米片的比表面积,确保电解质有效地润湿并渗透到电极表面,促进快速电荷转移,并提高传感器的电催化效率。本研究报道了首例具有石墨烯基面介孔形态的氮掺杂多孔还原氧化石墨烯(N-MHG)。结果表明,通过使用NH和HO对氧化石墨烯进行一步水热处理可以合成N-MHG。还开发了一种简单的N-MHG纯化方法。原子力显微镜、透射电子显微镜和拉曼分析表明,N-MHG具有高度介孔网络结构,孔径范围为10至50nm。X射线光电子能谱数据表明,在蚀刻过程中氧化石墨烯片部分还原,但与还原氧化石墨烯相比,C═O和O-C═O片段的含量也高出3至5倍。这可以解释N-MHG水悬浮液的显著稳定性。在玻碳电极上用N-MHG/纳滤膜组装了用于多巴胺分析的电化学传感器,并通过循环伏安法和电化学阻抗谱对其进行了表征。