Suppr超能文献

基于药效团模型和深度学习的 BRCA1 基因靶标分子活性预测

Integrating pharmacophore model and deep learning for activity prediction of molecules with BRCA1 gene.

机构信息

Department of Computer Science, Computer Research Laboratory, Badji Mokhtar University, Annaba, Algeria.

出版信息

J Bioinform Comput Biol. 2024 Feb;22(1):2450003. doi: 10.1142/S0219720024500033.

Abstract

In this paper, we propose a novel approach for predicting the activity/inactivity of molecules with the BRCA1 gene by combining pharmacophore modeling and deep learning techniques. Initially, we generated 3D pharmacophore fingerprints using a pharmacophore model, which captures the essential features and spatial arrangements critical for biological activity. These fingerprints served as informative representations of the molecular structures. Next, we employed deep learning algorithms to train a predictive model using the generated pharmacophore fingerprints. The deep learning model was designed to learn complex patterns and relationships between the pharmacophore features and the corresponding activity/inactivity labels of the molecules. By utilizing this integrated approach, we aimed to enhance the accuracy and efficiency of activity prediction. To validate the effectiveness of our approach, we conducted experiments using a dataset of known molecules with BRCA1 gene activity/inactivity from diverse sources. Our results demonstrated promising predictive performance, indicating the successful integration of pharmacophore modeling and deep learning. Furthermore, we utilized the trained model to predict the activity/inactivity of unknown molecules extracted from the ChEMBL database. The predictions obtained from the ChEMBL database were assessed and compared against experimentally determined values to evaluate the reliability and generalizability of our model. Overall, our proposed approach showcased significant potential in accurately predicting the activity/inactivity of molecules with the BRCA1 gene, thus enabling the identification of potential candidates for further investigation in drug discovery and development processes.

摘要

在本文中,我们提出了一种新的方法,通过结合药效团模型和深度学习技术来预测具有 BRCA1 基因的分子的活性/非活性。首先,我们使用药效团模型生成了 3D 药效团指纹,该模型捕获了对生物活性至关重要的特征和空间排列。这些指纹作为分子结构的信息表示。接下来,我们使用生成的药效团指纹使用深度学习算法来训练预测模型。深度学习模型旨在学习药效团特征与分子的相应活性/非活性标签之间的复杂模式和关系。通过利用这种集成方法,我们旨在提高活性预测的准确性和效率。为了验证我们方法的有效性,我们使用来自不同来源的具有 BRCA1 基因活性/非活性的已知分子数据集进行了实验。我们的结果表明了有希望的预测性能,表明药效团模型和深度学习的成功集成。此外,我们利用训练好的模型来预测从 ChEMBL 数据库中提取的未知分子的活性/非活性。从 ChEMBL 数据库中获得的预测结果与实验确定的值进行了评估和比较,以评估我们模型的可靠性和通用性。总体而言,我们提出的方法在准确预测具有 BRCA1 基因的分子的活性/非活性方面具有很大的潜力,从而能够识别出药物发现和开发过程中进一步研究的潜在候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验