Department of Pathology, Ajou University School of Medicine, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon-si, Republic of Korea.
Clin Transl Oncol. 2024 Sep;26(9):2296-2308. doi: 10.1007/s12094-024-03474-9. Epub 2024 Apr 3.
Brain metastasis (BM) is common in lung adenocarcinoma (LUAD) and has a poor prognosis, necessitating predictive biomarkers. MicroRNAs (MiRNAs) promote cancer cell growth, infiltration, and metastasis. However, the relationship between the miRNA expression profiles and BM occurrence in patients with LUAD remains unclear.
We conducted an analysis to identify miRNAs in tissue samples that exhibited different expression levels between patients with and without BM. Using a machine learning approach, we confirmed whether the miRNA profile could be a predictive tool for BM. We performed pathway analysis of miRNA target genes using a matched mRNA dataset.
We selected 25 miRNAs that consistently exhibited differential expression between the two groups of 32 samples. The 25-miRNA profile demonstrated a strong predictive potential for BM in both Group 1 and Group 2 and the entire dataset (area under the curve [AUC] = 0.918, accuracy = 0.875 in Group 1; AUC = 0.867, accuracy = 0.781 in Group 2; and AUC = 0.908, accuracy = 0.875 in the entire group). Patients predicted to have BM, based on the 25-miRNA profile, had lower survival rates. Target gene analysis of miRNAs suggested that BM could be induced through the ErbB signaling pathway, proteoglycans in cancer, and the focal adhesion pathway. Furthermore, patients predicted to have BM based on the 25-miRNA profile exhibited higher expression of the epithelial-mesenchymal transition signature, TWIST, and vimentin than those not predicted to have BM. Specifically, there was a correlation between EGFR mRNA levels and BM.
This 25-miRNA profile may serve as a biomarker for predicting BM in patients with LUAD.
脑转移(BM)在肺腺癌(LUAD)中很常见,预后较差,因此需要预测性生物标志物。microRNAs(miRNAs)促进癌细胞生长、浸润和转移。然而,miRNA 表达谱与 LUAD 患者 BM 发生之间的关系尚不清楚。
我们进行了一项分析,以确定组织样本中在有和没有 BM 的患者之间表现出不同表达水平的 miRNAs。我们使用机器学习方法来验证 miRNA 谱是否可以作为 BM 的预测工具。我们使用匹配的 mRNA 数据集对 miRNA 靶基因进行了途径分析。
我们选择了 25 个在两组 32 个样本中始终表现出差异表达的 miRNAs。在两组和整个数据集(曲线下面积[AUC] = 0.918,准确性 = 0.875 在第 1 组;AUC = 0.867,准确性 = 0.781 在第 2 组;AUC = 0.908,准确性 = 0.875 在整个组)中,25-miRNA 谱对 BM 具有很强的预测潜力。基于 25-miRNA 谱预测有 BM 的患者的生存率较低。miRNA 的靶基因分析表明,BM 可能通过 ErbB 信号通路、癌症中的蛋白聚糖和焦点黏附途径诱导。此外,基于 25-miRNA 谱预测有 BM 的患者比未预测有 BM 的患者表现出更高的上皮-间充质转化特征、TWIST 和波形蛋白的表达。特别是,EGFR mRNA 水平与 BM 之间存在相关性。
该 25-miRNA 谱可作为预测 LUAD 患者 BM 的生物标志物。