Aswathy Raghu, Chalos Varghese Angel, Suganya Kanagaraj, Sumathi Sundaravadivelu
Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
Med Oncol. 2024 Dec 17;42(1):30. doi: 10.1007/s12032-024-02579-z.
MicroRNAs (miRNAs), a class of small non-coding RNAs, play a vital role in regulating gene expression at the post-transcriptional level. Their discovery has profoundly impacted therapeutic strategies, particularly in cancer treatment, where RNA therapeutics, including miRNA-based targeted therapies, have gained prominence. Advances in RNA sequencing technologies have facilitated a comprehensive exploration of miRNAs-from fundamental research to their diagnostic and prognostic potential in various diseases, notably cancers. However, the manual handling and interpretation of vast RNA datasets pose significant challenges. The advent of artificial intelligence (AI) has revolutionized biological research by efficiently extracting insights from complex data. Machine learning algorithms, particularly deep learning techniques are effective for identifying critical miRNAs across different cancers and developing prognostic models. Moreover, the integration of AI has led to the creation of comprehensive miRNA databases for identifying mRNA and gene targets, thus facilitating deeper understanding and application in cancer research. This review comprehensively examines current developments in the application of machine learning techniques in miRNA research across diverse cancers. We discuss their roles in identifying biomarkers, elucidating miRNA targets, establishing disease associations, predicting prognostic outcomes, and exploring broader AI applications in cancer research. This review aims to guide researchers in leveraging AI techniques effectively within the miRNA field, thereby accelerating advancements in cancer diagnostics and therapeutics.
微小RNA(miRNA)是一类小的非编码RNA,在转录后水平调控基因表达中发挥着至关重要的作用。它们的发现对治疗策略产生了深远影响,尤其是在癌症治疗中,包括基于miRNA的靶向治疗在内的RNA治疗方法已变得日益重要。RNA测序技术的进步推动了对miRNA的全面探索——从基础研究到其在各种疾病(尤其是癌症)中的诊断和预后潜力。然而,对大量RNA数据集的人工处理和解读带来了重大挑战。人工智能(AI)的出现通过有效从复杂数据中提取见解,彻底改变了生物学研究。机器学习算法,特别是深度学习技术,对于识别不同癌症中的关键miRNA以及开发预后模型非常有效。此外,AI的整合促使创建了用于识别mRNA和基因靶点的综合miRNA数据库,从而有助于在癌症研究中进行更深入的理解和应用。本综述全面审视了机器学习技术在不同癌症的miRNA研究中的当前应用进展。我们讨论了它们在识别生物标志物、阐明miRNA靶点、建立疾病关联、预测预后结果以及探索AI在癌症研究中的更广泛应用方面的作用。本综述旨在指导研究人员在miRNA领域有效利用AI技术,从而加速癌症诊断和治疗的进展。