Suppr超能文献

使用激光诱导击穿光谱和机器学习(偏最小二乘回归、卷积神经网络、残差网络和深度残差收缩网络)测定激光熔覆的表面硬度。

Surface hardness determination of laser cladding using laser-induced breakdown spectroscopy and machine learning (PLSR, CNN, ResNet, and DRSN).

作者信息

Yang Jiacheng, Kong Linghua, Ye Hongji

出版信息

Appl Opt. 2024 Apr 1;63(10):2509-2517. doi: 10.1364/AO.516603.

Abstract

In this study, we employed laser-induced breakdown spectroscopy (LIBS) along with machine learning algorithms, which encompass partial least squares regression (PLSR), the deep convolutional neural network (CNN), the deep residual neural network (ResNet), and the deep residual shrinkage neural network (DRSN), to estimate the surface hardness of laser cladding layers. (The layers were produced using Fe316L, FeCrNiCu, Ni25, FeCrNiB, and Fe313 powders, with 45 steel and Q235 serving as substrates.) The research findings indicate that both linear and nonlinear models can effectively fit the relationship between LIBS spectra and surface hardness. Particularly, the model derived from the ResNet exhibits superior performance with an value as high as 0.9967. We hypothesize that the inclusion of numerous noises in the LIBS spectra contributes to the enhanced predictive capability for surface hardness, thereby leading to the superior performance of the ResNet compared to the DRSN.

摘要

在本研究中,我们采用激光诱导击穿光谱技术(LIBS)并结合机器学习算法,其中包括偏最小二乘回归(PLSR)、深度卷积神经网络(CNN)、深度残差神经网络(ResNet)和深度残差收缩神经网络(DRSN),来估算激光熔覆层的表面硬度。(这些熔覆层是使用Fe316L、FeCrNiCu、Ni25、FeCrNiB和Fe313粉末制备的,以45钢和Q235作为基材。)研究结果表明,线性和非线性模型都能有效地拟合LIBS光谱与表面硬度之间的关系。特别是,源自ResNet的模型表现出卓越的性能,其R值高达0.9967。我们推测,LIBS光谱中包含的大量噪声有助于提高对表面硬度的预测能力,从而使ResNet相比DRSN具有更卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验