Zhu Jie, Jeong Moonsoo, Lee Sungkil
Appl Opt. 2024 Mar 10;63(8):1917-1928. doi: 10.1364/AO.511482.
Head-mounted displays (HMDs) are becoming increasingly popular as a crucial component of virtual reality (VR). However, contemporary HMDs enforce a simple optical structure due to their constrained form factor, which impedes the use of multiple lens elements that can reduce aberrations in general. As a result, they introduce severe aberrations and imperfections in optical imagery, causing visual fatigue and degrading the immersive experience of being present in VR. To address this issue without modifying the hardware system, we present a novel, to the best of our knowledge, software-driven approach that compensates for the aberrations in HMDs in real time. Our approach involves pre-correction that deconvolves an input image to minimize the difference between its after-lens image and the ideal image. We characterize the specific wavefront aberration and point spread function (PSF) of the optical system using Zernike polynomials. To achieve higher computational efficiency, we improve the conventional deconvolution based on hyper-Laplacian prior by adopting a regularization constraint term based on L2 optimization and the input-image gradient. Furthermore, we implement our solution entirely on a graphics processing unit (GPU) to ensure constant and scalable real-time performance for interactive VR. Our experiments evaluating our algorithm demonstrate that our solution can reliably reduce the aberration of the after-lens images in real time.
头戴式显示器(HMD)作为虚拟现实(VR)的关键组件正变得越来越受欢迎。然而,由于其受限的外形尺寸,当代HMD采用简单的光学结构,这阻碍了使用多个通常可减少像差的透镜元件。结果,它们在光学图像中引入了严重的像差和缺陷,导致视觉疲劳并降低了VR中的沉浸体验。为了在不修改硬件系统的情况下解决此问题,据我们所知,我们提出了一种新颖的软件驱动方法,可实时补偿HMD中的像差。我们的方法涉及预校正,即对输入图像进行反卷积以最小化其透镜后图像与理想图像之间的差异。我们使用泽尼克多项式来表征光学系统的特定波前像差和点扩散函数(PSF)。为了实现更高的计算效率,我们通过采用基于L2优化和输入图像梯度的正则化约束项来改进基于超拉普拉斯先验的传统反卷积。此外,我们完全在图形处理单元(GPU)上实现我们的解决方案,以确保交互式VR具有恒定且可扩展的实时性能。我们评估算法的实验表明,我们的解决方案可以可靠地实时减少透镜后图像的像差。