Suppr超能文献

基于堆叠集成学习的 [F]FDG PET 放射组学在弥漫性大 B 细胞淋巴瘤预后预测中的应用。

Stacking Ensemble Learning-Based [F]FDG PET Radiomics for Outcome Prediction in Diffuse Large B-Cell Lymphoma.

机构信息

Department of Nuclear Medicine and PET Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.

Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.

出版信息

J Nucl Med. 2023 Oct;64(10):1603-1609. doi: 10.2967/jnumed.122.265244. Epub 2023 Jul 27.

Abstract

This study aimed to develop an analytic approach based on [F]FDG PET radiomics using stacking ensemble learning to improve the outcome prediction in diffuse large B-cell lymphoma (DLBCL). In total, 240 DLBCL patients from 2 medical centers were divided into the training set ( = 141), internal testing set ( = 61), and external testing set ( = 38). Radiomics features were extracted from pretreatment [F]FDG PET scans at the patient level using 4 semiautomatic segmentation methods (SUV threshold of 2.5, SUV threshold of 4.0 [SUV4.0], 41% of SUV, and SUV threshold of mean liver uptake [PERCIST]). All extracted features were harmonized with the ComBat method. The intraclass correlation coefficient was used to evaluate the reliability of radiomics features extracted by different segmentation methods. Features from the most reliable segmentation method were selected by Pearson correlation coefficient analysis and the LASSO (least absolute shrinkage and selection operator) algorithm. A stacking ensemble learning approach was applied to build radiomics-only and combined clinical-radiomics models for prediction of 2-y progression-free survival and overall survival based on 4 machine learning classifiers (support vector machine, random forests, gradient boosting decision tree, and adaptive boosting). Confusion matrix, receiver-operating-characteristic curve analysis, and survival analysis were used to evaluate the model performance. Among 4 semiautomatic segmentation methods, SUV4.0 segmentation yielded the highest interobserver reliability, with 830 (66.7%) selected radiomics features. The combined model constructed by the stacking method achieved the best discrimination performance. For progression-free survival prediction in the external testing set, the areas under the receiver-operating-characteristic curve and accuracy of the stacking-based combined model were 0.771 and 0.789, respectively. For overall survival prediction, the stacking-based combined model achieved an area under the curve of 0.725 and an accuracy of 0.763 in the external testing set. The combined model also demonstrated a more distinct risk stratification than the International Prognostic Index in all sets (log-rank test, all < 0.05). The combined model that incorporates [F]FDG PET radiomics and clinical characteristics based on stacking ensemble learning could enable improved risk stratification in DLBCL.

摘要

本研究旨在开发一种基于 [F]FDG PET 放射组学的分析方法,采用堆叠集成学习来提高弥漫性大 B 细胞淋巴瘤(DLBCL)的预后预测能力。共纳入来自 2 家医疗中心的 240 例 DLBCL 患者,将其分为训练集(n=141)、内部测试集(n=61)和外部测试集(n=38)。使用 4 种半自动分割方法(SUV 阈值 2.5、SUV 阈值 4.0[SUV4.0]、41%SUV 和 SUV 均值肝摄取阈值[PERCIST])从预处理 [F]FDG PET 扫描中提取肿瘤水平的放射组学特征。采用 ComBat 方法对所有提取的特征进行协变量调整。采用组内相关系数评估不同分割方法提取的放射组学特征的可靠性。采用 Pearson 相关系数分析和 LASSO(最小绝对收缩和选择算子)算法选择最可靠分割方法的特征。采用堆叠集成学习方法构建基于 4 种机器学习分类器(支持向量机、随机森林、梯度提升决策树和自适应提升)的仅放射组学和联合临床-放射组学模型,用于预测 2 年无进展生存期和总生存期。采用混淆矩阵、受试者工作特征曲线分析和生存分析评估模型性能。在 4 种半自动分割方法中,SUV4.0 分割的观察者间可靠性最高,筛选出 830 个(66.7%)放射组学特征。基于堆叠方法构建的联合模型具有最佳的判别性能。在外部测试集中,基于堆叠方法构建的联合模型对无进展生存期的预测,受试者工作特征曲线下面积和准确率分别为 0.771 和 0.789。在总生存期预测中,基于堆叠方法构建的联合模型在外部测试集的曲线下面积和准确率分别为 0.725 和 0.763。该联合模型在所有数据集(对数秩检验,均 <0.05)中的风险分层也优于国际预后指数。基于堆叠集成学习的结合 [F]FDG PET 放射组学和临床特征的联合模型可改善 DLBCL 的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验