Yin Yingjiaqi, Xu Yan, Zhang Huayang, Zheng Hongcen, Xu Zhe, Xu Chenmin, Zuo Gancheng, Yang Shaogui, He Huan, Liu Yazi
Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China.
Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
J Colloid Interface Sci. 2024 Jul 15;666:648-658. doi: 10.1016/j.jcis.2024.03.194. Epub 2024 Mar 29.
Interfacial regulation is key to photocatalytic performance, yet modulating interfacial charge transfer in heterostructures remains challenging. Herein, a novel nanoflower-like FeP/ZnInS Ohm heterostructure is first designed, with Zn atoms in ZnInS (ZIS) acting as potential anchoring sites around P atoms, forming liganded Zn-P bonds. Combining 1D FeP nanowires and 2D ZIS nanosheets enhances the mobility of photogenerated electrons. The synergistic chain-type "electron pickup" mechanism of the Ohm heterojunction coupled with the Zn-P bond speeds up electron transport at the interface. The Ohm heterojunction initiates an internal electric field, creating a driving force to further transfer photogenerated electrons through the Zn-P rapid electron transport channel to FeP, which acts as a reservoir for active sites to release H. The optimized FeP/ZIS demonstrates a remarkable H evolution rate at 4.36 mmol h g, 3.6 times that of pristine ZIS. This work provides novel insights into optimizing photocarrier dynamics via interfacial microenvironment modulation.
界面调控是光催化性能的关键,但调节异质结构中的界面电荷转移仍然具有挑战性。在此,首次设计了一种新型的纳米花状FeP/ZnInS欧姆异质结构,其中ZnInS(ZIS)中的Zn原子作为P原子周围的潜在锚定位点,形成配位的Zn-P键。一维FeP纳米线与二维ZIS纳米片相结合,提高了光生电子的迁移率。欧姆异质结与Zn-P键协同作用的链型“电子捕获”机制加快了界面处的电子传输。欧姆异质结产生一个内建电场,产生驱动力,通过Zn-P快速电子传输通道将光生电子进一步转移到FeP,FeP作为活性位点释放H的储存库。优化后的FeP/ZIS在4.36 mmol h g时表现出显著的析氢速率,是原始ZIS的3.6倍。这项工作为通过界面微环境调控优化光载流子动力学提供了新的见解。