文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道微生物衍生的丁酸盐通过 mTOR 介导的自噬恢复重症肌无力患者中受损的调节性 T 细胞。

Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy.

机构信息

Department of Digestive Endoscopy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Guangdong Clinical Research Academy of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.

出版信息

Cell Commun Signal. 2024 Apr 3;22(1):215. doi: 10.1186/s12964-024-01588-9.


DOI:10.1186/s12964-024-01588-9
PMID:38570836
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10988943/
Abstract

More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.

摘要

超过 80%的重症肌无力(MG)患者的抗乙酰胆碱受体(AChR)抗体呈阳性。调节性 T 细胞(Tregs)抑制这些抗体的过度产生,而 AChR 抗体阳性 MG(AChR MG)患者的 Treg 功能受损,Treg 数量减少。肠道微生物群及其代谢物在维持 Treg 分化和功能方面发挥着至关重要的作用。然而,AChR MG 患者的 Tregs 功能受损是否与肠道微生物群的活性有关尚不清楚。在这里,我们证明 AChR MG 患者体内产生丁酸的肠道细菌和血清丁酸水平降低。丁酸盐补充剂可有效增强 Treg 的分化及其对 AChR MG 的抑制功能。在机制上,丁酸盐通过抑制哺乳动物雷帕霉素靶蛋白来激活 Treg 细胞的自噬。自噬的激活增加了 Treg 细胞的氧化磷酸化和细胞毒性 T 淋巴细胞相关蛋白 4 的表面表达,从而促进了 AChR MG 中 Treg 的分化及其抑制功能。使用自噬抑制剂氯喹阻断了丁酸盐的这种作用,表明丁酸盐激活的自噬在 AChR MG 的 Tregs 中起着至关重要的作用。我们提出,源自肠道细菌的丁酸通过恢复受损的 Tregs 对 AChR MG 具有潜在的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/d9b1833632bf/12964_2024_1588_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/a47a1a2ed9c8/12964_2024_1588_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/8f84fbed0eeb/12964_2024_1588_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/955d9852699c/12964_2024_1588_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/d4a0cb032fd2/12964_2024_1588_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/2254ac02d195/12964_2024_1588_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/7dd3d44fc78f/12964_2024_1588_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/d9b1833632bf/12964_2024_1588_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/a47a1a2ed9c8/12964_2024_1588_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/8f84fbed0eeb/12964_2024_1588_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/955d9852699c/12964_2024_1588_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/d4a0cb032fd2/12964_2024_1588_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/2254ac02d195/12964_2024_1588_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/7dd3d44fc78f/12964_2024_1588_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/10988943/d9b1833632bf/12964_2024_1588_Fig7_HTML.jpg

相似文献

[1]
Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy.

Cell Commun Signal. 2024-4-3

[2]
Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a randomised, double-blind, placebo-controlled, adaptive phase 3 study.

Lancet Neurol. 2023-5

[3]
Heterogeneity of Acetylcholine Receptor Autoantibody-Mediated Complement Activity in Patients With Myasthenia Gravis.

Neurol Neuroimmunol Neuroinflamm. 2022-7

[4]
AChR Autoantibody Pathogenic Properties Are Heterogeneously Distributed and Undergo Temporal Changes Among Patients With Myasthenia Gravis.

Neurol Neuroimmunol Neuroinflamm. 2025-9

[5]
Autoantibodies in myasthenia gravis.

Int Rev Neurobiol. 2025

[6]
Shengxian decoction alleviates experimental autoimmune myasthenia gravis by enhancing the immunosuppressive activity of regulatory T cells via Hippo pathway.

J Ethnopharmacol. 2025-8-29

[7]
Synergistic gut microbiome-mediated degradation of polysaccharides and polysaccharides into butyric acid: a metatranscriptomic analysis.

Microbiol Spectr. 2025-7

[8]
Comparison of outcomes and postoperative immunotherapy between patients with non-thymomatous and thymomatous myasthenia gravis following thymectomy.

Ther Adv Neurol Disord. 2025-6-20

[9]
Myasthenia gravis with antibodies against the AChR, current knowledge on pathophysiology and an update on treatment strategies with special focus on targeting plasma cells.

Autoimmun Rev. 2025-7-10

[10]
Gut microbiota depletion accelerates hematoma resolution and neurological recovery after intracerebral hemorrhage via p-coumaric acid-promoted Treg differentiation.

Theranostics. 2025-6-9

引用本文的文献

[1]
Microbiota and enteric nervous system crosstalk in diabetic gastroenteropathy: bridging mechanistic insights to microbiome-based therapies.

Front Cell Infect Microbiol. 2025-8-11

[2]
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy.

Nutrients. 2025-7-30

[3]
Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification.

Gut Microbes. 2025-12

[4]
Global deletion of the immune cell transcription factor, T-bet, alters gut microbiota and insulin sensitivity in mice.

Front Genet. 2024-11-27

[5]
Mitochondrial dysfunction in myasthenia gravis: Exploring directions for future immunotherapy? A review.

Biomol Biomed. 2025-1-14

[6]
Exploring the Role of the Gut Microbiota in Modulating Colorectal Cancer Immunity.

Cells. 2024-8-27

本文引用的文献

[1]
Sodium butyrate alleviates R97-116 peptide-induced myasthenia gravis in mice by improving the gut microbiota and modulating immune response.

J Inflamm (Lond). 2023-11-3

[2]
Metagenome-wide association study of gut microbiome revealed potential microbial marker set for diagnosis of pediatric myasthenia gravis.

BMC Med. 2021-7-8

[3]
AChR antibodies show a complex interaction with human skeletal muscle cells in a transcriptomic study.

Sci Rep. 2020-7-8

[4]
CD4 T Cells of Myasthenia Gravis Patients Are Characterized by Increased IL-21, IL-4, and IL-17A Productions and Higher Presence of PD-1 and ICOS.

Front Immunol. 2020

[5]
Quantitative features and clinical significance of two subpopulations of AChR-specific CD4+ T cells in patients with myasthenia gravis.

Clin Immunol. 2020-7

[6]
IFN-α Modulates Memory Tfh Cells and Memory B Cells in Mice, Following Recombinant FMDV Adenoviral Challenge.

Front Immunol. 2020

[7]
Defects of CTLA-4 Are Associated with Regulatory T Cells in Myasthenia Gravis Implicated by Intravenous Immunoglobulin Therapy.

Mediators Inflamm. 2020-2-14

[8]
Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics.

Front Immunol. 2020

[9]
mTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cells.

Sci Rep. 2019-12-27

[10]
CD4 T Cell-Released Extracellular Vesicles Potentiate the Efficacy of the HBsAg Vaccine by Enhancing B Cell Responses.

Adv Sci (Weinh). 2019-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索