Suppr超能文献

一种用于连续估计手指关节运动学的旋转变压器跨主体模型及针对新主体的迁移学习方法。

A rotary transformer cross-subject model for continuous estimation of finger joints kinematics and a transfer learning approach for new subjects.

作者信息

Lin Chuang, He Zheng

机构信息

School of Information Science and Technology, Dalian Maritime University, Dalian, China.

出版信息

Front Neurosci. 2024 Mar 20;18:1306050. doi: 10.3389/fnins.2024.1306050. eCollection 2024.

Abstract

INTRODUCTION

Surface Electromyographic (sEMG) signals are widely utilized for estimating finger kinematics continuously in human-machine interfaces (HMI), and deep learning approaches are crucial in constructing the models. At present, most models are extracted on specific subjects and do not have cross-subject generalizability. Considering the erratic nature of sEMG signals, a model trained on a specific subject cannot be directly applied to other subjects. Therefore, in this study, we proposed a cross-subject model based on the Rotary Transformer (RoFormer) to extract features of multiple subjects for continuous estimation kinematics and extend it to new subjects by adversarial transfer learning (ATL) approach.

METHODS

We utilized the new subject's training data and an ATL approach to calibrate the cross-subject model. To improve the performance of the classic transformer network, we compare the impact of different position embeddings on model performance, including learnable absolute position embedding, Sinusoidal absolute position embedding, and Rotary Position Embedding (RoPE), and eventually selected RoPE. We conducted experiments on 10 randomly selected subjects from the NinaproDB2 dataset, using Pearson correlation coefficient (CC), normalized root mean square error (NRMSE), and coefficient of determination (R2) as performance metrics.

RESULTS

The proposed model was compared with four other models including LSTM, TCN, Transformer, and CNN-Attention. The results demonstrated that both in cross-subject and subject-specific cases the performance of RoFormer was significantly better than the other four models. Additionally, the ATL approach improves the generalization performance of the cross-subject model better than the fine-tuning (FT) transfer learning approach.

DISCUSSION

The findings indicate that the proposed RoFormer-based method with an ATL approach has the potential for practical applications in robot hand control and other HMI settings. The model's superior performance suggests its suitability for continuous estimation of finger kinematics across different subjects, addressing the limitations of subject-specific models.

摘要

引言

表面肌电(sEMG)信号在人机接口(HMI)中被广泛用于连续估计手指运动学,深度学习方法在构建模型中至关重要。目前,大多数模型是在特定受试者上提取的,不具有跨受试者的通用性。考虑到sEMG信号的不稳定特性,在特定受试者上训练的模型不能直接应用于其他受试者。因此,在本研究中,我们提出了一种基于旋转变换器(RoFormer)的跨受试者模型,以提取多个受试者的特征用于连续运动学估计,并通过对抗性迁移学习(ATL)方法将其扩展到新的受试者。

方法

我们利用新受试者的训练数据和ATL方法来校准跨受试者模型。为了提高经典变换器网络的性能,我们比较了不同位置嵌入对模型性能的影响,包括可学习的绝对位置嵌入、正弦绝对位置嵌入和旋转位置嵌入(RoPE),最终选择了RoPE。我们在从NinaproDB2数据集中随机选择的10个受试者上进行了实验,使用皮尔逊相关系数(CC)、归一化均方根误差(NRMSE)和决定系数(R2)作为性能指标。

结果

将所提出的模型与其他四个模型进行了比较,包括长短期记忆网络(LSTM)、时间卷积网络(TCN)、变换器和卷积神经网络注意力(CNN-Attention)。结果表明,在跨受试者和特定受试者的情况下,RoFormer的性能均显著优于其他四个模型。此外,与微调(FT)迁移学习方法相比,ATL方法能更好地提高跨受试者模型的泛化性能。

讨论

研究结果表明,所提出的基于RoFormer并采用ATL方法的方法在机器人手部控制和其他HMI设置中具有实际应用潜力。该模型的卓越性能表明它适用于跨不同受试者连续估计手指运动学,解决了特定受试者模型的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ea/10987947/dd243e1071d1/fnins-18-1306050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验