Suppr超能文献

用于从表面肌电图连续估计手指运动学的融合初始网络和变压器网络。

Fusion inception and transformer network for continuous estimation of finger kinematics from surface electromyography.

作者信息

Lin Chuang, Zhang Xiaobing

机构信息

School of Information Science and Technology, Dalian Maritime University, Dalian, China.

出版信息

Front Neurorobot. 2024 May 3;18:1305605. doi: 10.3389/fnbot.2024.1305605. eCollection 2024.

Abstract

Decoding surface electromyography (sEMG) to recognize human movement intentions enables us to achieve stable, natural and consistent control in the field of human computer interaction (HCI). In this paper, we present a novel deep learning (DL) model, named fusion inception and transformer network (FIT), which effectively models both local and global information on sequence data by fully leveraging the capabilities of Inception and Transformer networks. In the publicly available Ninapro dataset, we selected surface EMG signals from six typical hand grasping maneuvers in 10 subjects for predicting the values of the 10 most important joint angles in the hand. Our model's performance, assessed through Pearson's correlation coefficient (PCC), root mean square error (RMSE), and R-squared (R) metrics, was compared with temporal convolutional network (TCN), long short-term memory network (LSTM), and bidirectional encoder representation from transformers model (BERT). Additionally, we also calculate the training time and the inference time of the models. The results show that FIT is the most performant, with excellent estimation accuracy and low computational cost. Our model contributes to the development of HCI technology and has significant practical value.

摘要

解码表面肌电图(sEMG)以识别人类运动意图,使我们能够在人机交互(HCI)领域实现稳定、自然和一致的控制。在本文中,我们提出了一种名为融合Inception和Transformer网络(FIT)的新型深度学习(DL)模型,该模型通过充分利用Inception和Transformer网络的能力,有效地对序列数据的局部和全局信息进行建模。在公开可用的Ninapro数据集中,我们从10名受试者的六种典型手部抓握动作中选择了表面肌电信号,用于预测手部10个最重要关节角度的值。我们通过皮尔逊相关系数(PCC)、均方根误差(RMSE)和决定系数(R)指标评估模型的性能,并与时间卷积网络(TCN)、长短期记忆网络(LSTM)和来自Transformer模型的双向编码器表示(BERT)进行比较。此外,我们还计算了模型的训练时间和推理时间。结果表明,FIT性能最佳,具有出色的估计精度和较低的计算成本。我们的模型有助于HCI技术的发展,具有重要的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b819/11100415/5602c5082528/fnbot-18-1305605-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验