Bocanegra-Pérez Álvaro J, Piella Gemma, Sebastian Rafael, Jimenez-Perez Guillermo, Falasconi Giulio, Saglietto Andrea, Soto-Iglesias David, Berruezo Antonio, Penela Diego, Camara Oscar
Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science, Universitat de Valencia, Valencia, Spain.
Front Cardiovasc Med. 2024 Mar 20;11:1353096. doi: 10.3389/fcvm.2024.1353096. eCollection 2024.
The treatment of outflow tract ventricular arrhythmias (OTVA) through radiofrequency ablation requires the precise identification of the site of origin (SOO). Pinpointing the SOO enhances the likelihood of a successful procedure, reducing intervention times and recurrence rates. Current clinical methods to identify the SOO are based on qualitative analysis of pre-operative electrocardiograms (ECG), heavily relying on physician's expertise. Although computational models and machine learning (ML) approaches have been proposed to assist OTVA procedures, they either consume substantial time, lack interpretability or do not use clinical information. Here, we propose an alternative strategy for automatically predicting the ventricular origin of OTVA patients using ML. Our objective was to classify ventricular (left/right) origin in the outflow tracts (LVOT and RVOT, respectively), integrating ECG and clinical data from each patient. Extending beyond differentiating ventricle origin, we explored specific SOO characterization. Utilizing four databases, we also trained supervised learning models on the QRS complexes of the ECGs, clinical data, and their combinations. The best model achieved an accuracy of 89%, highlighting the significance of precordial leads V1-V4, especially in the R/S transition and initiation of the QRS complex in V2. Unsupervised analysis revealed that some origins tended to group closer than others, e.g., right coronary cusp (RCC) with a less sparse group than the aortic cusp origins, suggesting identifiable patterns for specific SOOs.
通过射频消融治疗流出道室性心律失常(OTVA)需要精确识别起源部位(SOO)。精确确定SOO可提高手术成功的可能性,减少干预时间和复发率。目前识别SOO的临床方法基于术前心电图(ECG)的定性分析,严重依赖医生的专业知识。尽管已经提出了计算模型和机器学习(ML)方法来辅助OTVA手术,但它们要么耗时过长,缺乏可解释性,要么未使用临床信息。在此,我们提出了一种使用ML自动预测OTVA患者心室起源的替代策略。我们的目标是对流出道(分别为左心室流出道和右心室流出道)的心室(左/右)起源进行分类,整合每位患者的ECG和临床数据。除了区分心室起源之外,我们还探索了特定SOO的特征。利用四个数据库,我们还对ECG的QRS波群、临床数据及其组合训练了监督学习模型。最佳模型的准确率达到了89%,突出了胸前导联V1-V4的重要性,尤其是在V2导联的R/S转换和QRS波群起始方面。无监督分析表明,一些起源部位比其他部位更倾向于聚集在一起,例如,右冠状动脉瓣(RCC)的聚集程度低于主动脉瓣起源,这表明特定SOO存在可识别的模式。