Suppr超能文献

使用混合质量标注数据集的卷积神经网络进行心电图描记。

Delineation of the electrocardiogram with a mixed-quality-annotations dataset using convolutional neural networks.

机构信息

PhySense research group, BCN-MedTech, Department of Information and Communication Technologies, Barcelona, 08018, Spain.

Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, 05830, Spain.

出版信息

Sci Rep. 2021 Jan 13;11(1):863. doi: 10.1038/s41598-020-79512-7.

Abstract

Detection and delineation are key steps for retrieving and structuring information of the electrocardiogram (ECG), being thus crucial for numerous tasks in clinical practice. Digital signal processing (DSP) algorithms are often considered state-of-the-art for this purpose but require laborious rule readaptation for adapting to unseen morphologies. This work explores the adaptation of the the U-Net, a deep learning (DL) network employed for image segmentation, to electrocardiographic data. The model was trained using PhysioNet's QT database, a small dataset of 105 2-lead ambulatory recordings, while being independently tested for many architectural variations, comprising changes in the model's capacity (depth, width) and inference strategy (single- and multi-lead) in a fivefold cross-validation manner. This work features several regularization techniques to alleviate data scarcity, such as semi-supervised pre-training with low-quality data labels, performing ECG-based data augmentation and applying in-built model regularizers. The best performing configuration reached precisions of 90.12%, 99.14% and 98.25% and recalls of 98.73%, 99.94% and 99.88% for the P, QRS and T waves, respectively, on par with DSP-based approaches. Despite being a data-hungry technique trained on a small dataset, a U-Net based approach demonstrates to be a viable alternative for this task.

摘要

检测和描绘是从心电图(ECG)中检索和构建信息的关键步骤,因此对于临床实践中的许多任务都至关重要。数字信号处理(DSP)算法通常被认为是该目的的最新技术,但需要繁琐的规则重新适应以适应看不见的形态。这项工作探索了 U-Net 的适应,U-Net 是一种用于图像分割的深度学习(DL)网络,适用于心电图数据。该模型使用 PhysioNet 的 QT 数据库进行训练,QT 数据库是一个包含 105 个 2 导联动态记录的小数据集,同时针对许多架构变化进行了独立测试,包括模型容量(深度、宽度)和推理策略(单导联和多导联)的变化,采用五重交叉验证方式。这项工作采用了几种正则化技术来缓解数据匮乏的问题,例如使用低质量数据标签进行半监督预训练、进行基于 ECG 的数据扩充以及应用内置模型正则化器。表现最佳的配置在 P、QRS 和 T 波上的精度分别达到了 90.12%、99.14%和 98.25%,召回率分别达到了 98.73%、99.94%和 99.88%,与基于 DSP 的方法相当。尽管这是一种基于小型数据集的、数据饥渴的技术,但基于 U-Net 的方法证明是该任务的一种可行替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a694/7806759/fd0268266bd9/41598_2020_79512_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验