Holsclaw Endowed Professor of Pharmacology, Director of Pharmacogenomics, College of Pharmacy, University of Arizona, Tucson, Arizona, USA.
Antioxid Redox Signal. 2024 Jun;40(16-18):943-947. doi: 10.1089/ars.2023.0478. Epub 2024 Apr 24.
Physical or chemical stress is commonly known to inhibit protein translation at the cellular level. Since the process of protein translation requires catalysis by a multi-component machinery containing eukaryotic initiation factors (eIFs) and ribosomes in a sequence of reactions, how the process fails to proceed and whether certain genes can escape such blockade have provoked research efforts. Lines of evidence have demonstrated that phosphorylation of eIF4E or dephosphorylation of 4E-binding proteins (4E-BPs) prevents the formation of the eukaryotic translation initiation factor 4F (eIF4F) complex, whereas phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2) due to activation of heme-regulated inhibitor (HRI), general control nonderepressible 2 (GCN2), protein kinase RNA-like endoplasmic reticulum kinase (PERK), or protein kinase R (PKR) by a diverse array of stressors prevents eIF2-GTP-tRNA ternary complex assembly. These signal the abandonment of translation initiation 5'-7-methylguanine (mG) cap recognition by eIF4E. Stress can promote cleavage of tRNAs, impediment of rRNA processing, changes in the epitranscriptomic landscape, ribosome stalling or collision, activation of ribosomal surveillance systems, and assembly of the stress granules. Although these events contribute to the general inhibition of protein translation, a few proteins can bypass such negativity and become translated selectively. Such selective protein translation is primarily mG cap independent through the integrated stress response or Internal Ribosomal Entry Site (IRES). The newly synthesized proteins often influence cell fate, facilitate cell survival, and build endogenous defense. Insights into the general inhibition of protein translation and selective translation of specific proteins will advance our understanding of the etiology or progression of human diseases involving cellular stress from viral infection or inflammation to myocardial infarction, stroke, or neurodegenerative disease. 40, 943-947.
众所周知,物理或化学应激会抑制细胞水平的蛋白质翻译。由于蛋白质翻译过程需要在一系列反应中由包含真核起始因子 (eIFs) 和核糖体的多组分机制催化,因此该过程如何无法进行以及某些基因是否可以逃脱这种阻断已引发了研究工作。有证据表明,eIF4E 的磷酸化或 4E 结合蛋白 (4E-BPs) 的去磷酸化可阻止真核翻译起始因子 4F (eIF4F) 复合物的形成,而由于血红素调节抑制剂 (HRI)、一般控制非抑制 2 (GCN2)、蛋白激酶 RNA 样内质网激酶 (PERK) 或蛋白激酶 R (PKR) 的激活导致的真核翻译起始因子 2α (eIF2) 的磷酸化,通过多种应激源阻止 eIF2-GTP-tRNA 三元复合物的组装。这些信号表明放弃了 eIF4E 对 5'-7-甲基鸟嘌呤 (mG) 帽的识别。应激可促进 tRNA 的切割、rRNA 加工的障碍、转录后组学景观的变化、核糖体停滞或碰撞、核糖体监测系统的激活以及应激颗粒的组装。尽管这些事件导致了蛋白质翻译的普遍抑制,但少数蛋白质可以选择性地被翻译。这种选择性蛋白质翻译主要是通过整合应激反应或内部核糖体进入位点 (IRES) 而不依赖于 mG 帽。新合成的蛋白质通常会影响细胞命运、促进细胞存活并建立内源性防御。对蛋白质翻译的普遍抑制和特定蛋白质的选择性翻译的深入了解将有助于我们理解涉及细胞应激的人类疾病的病因或进展,从病毒感染或炎症到心肌梗死、中风或神经退行性疾病。 40, 943-947.