Suppr超能文献

症状性颅内动脉粥样硬化狭窄成功支架植入后缺血性卒中复发的临床预测模型的建立和验证。

Development and validation of a clinical prediction model for ischemic stroke recurrence after successful stent implantation in symptomatic intracranial atherosclerotic stenosis.

机构信息

School of Clinical Medicine, Jining Medical University, Shandong, China.

Department of Neurology, Jining No.1 People's Hospital, Shandong, China.

出版信息

J Clin Neurosci. 2024 May;123:137-147. doi: 10.1016/j.jocn.2024.03.028. Epub 2024 Apr 4.

Abstract

OBJECTIVE

This study aimed to analyze the risk factors for recurrent ischemic stroke in patients with symptomatic intracranial atherosclerotic stenosis (ICAS) who underwent successful stent placement and to establish a nomogram prediction model.

METHODS

We utilized data from a prospective collection of 430 consecutive patients at Jining NO.1 People's Hospital from November 2021 to November 2022, conducting further analysis on the subset of 400 patients who met the inclusion criteria. They were further divided into training (n=321) and validation (n=79) groups. In the training group, we used univariate and multivariate COX regression to find independent risk factors for recurrent stroke and then created a nomogram. The assessment of the nomogram's discrimination and calibration was performed through the examination of various measures including the Consistency index (C-index), the area under the receiver operating characteristic (ROC) curves (AUC), and the calibration plots. Decision curve analysis (DCA) was used to evaluate the clinical utility of the nomogram by quantifying the net benefit to the patient under different threshold probabilities.

RESULTS

The nomogram for predicting recurrent ischemic stroke in symptomatic ICAS patients after stent placement utilizes six variables: coronary heart disease (CHD), smoking, multiple ICAS, systolic blood pressure (SBP), in-stent restenosis (ISR), and fasting plasma glucose. The C-index (0.884 for the training cohort and 0.87 for the validation cohort) and the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Furthermore, DCA indicated a clinical net benefit from the nomogram.

CONCLUSIONS

The predictive model constructed includes six predictive factors: CHD, smoking, multiple ICAS, SBP, ISR and fasting blood glucose. The model demonstrates good predictive ability and can be utilized to predict ischemic stroke recurrence in patients with symptomatic ICAS after successful stent placement.

摘要

目的

本研究旨在分析接受成功支架置入术的症状性颅内动脉粥样硬化性狭窄(ICAS)患者复发性缺血性卒中的危险因素,并建立列线图预测模型。

方法

我们利用 2021 年 11 月至 2022 年 11 月期间在济宁第一人民医院连续收集的 430 例患者的数据,对符合纳入标准的 400 例患者进行了进一步分析。他们进一步分为训练(n=321)和验证(n=79)组。在训练组中,我们使用单变量和多变量 COX 回归来寻找复发性卒中的独立危险因素,然后建立列线图。通过检查一致性指数(C 指数)、接受者操作特征(ROC)曲线下面积(AUC)和校准图等各种指标,评估列线图的区分度和校准度。通过量化不同阈值概率下患者的净收益,决策曲线分析(DCA)用于评估列线图的临床实用性。

结果

用于预测支架置入后症状性 ICAS 患者复发性缺血性卒中的列线图使用了 6 个变量:冠心病(CHD)、吸烟、多发性 ICAS、收缩压(SBP)、支架内再狭窄(ISR)和空腹血糖。列线图的 C 指数(训练队列为 0.884,验证队列为 0.87)和时间依赖性 AUC(>0.7)表明其具有良好的区分能力。此外,DCA 表明该列线图具有临床净收益。

结论

该预测模型包含 6 个预测因素:CHD、吸烟、多发性 ICAS、SBP、ISR 和空腹血糖。该模型具有良好的预测能力,可用于预测成功支架置入后症状性 ICAS 患者的缺血性卒中复发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验