Division of Cardiology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
Physiol Rep. 2024 Apr;12(7):e15990. doi: 10.14814/phy2.15990.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are rapidly gaining ground in the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) and acute myocardial infarction (AMI) by an unknown mechanism. Upregulation of Na/H exchanger 1 (NHE1), SGLT1, and Ca/calmodulin-dependent protein kinase II (CaMKII) in the diseased hearts was found to be attenuated by prolonged SGLT2i treatment. Unfortunately, dapagliflozin is not well understood as to how Na/Ca homeostasis is affected in cardiomyocytes. In this study, we aimed to investigate whether mechanical stretch in cardiomyocytes upregulate SGLT2, resulted to loss of Na/Ca homeostasis via ERK and eNOS signaling. AMI (+) and AMI (-) serum levels were estimated using ELISA assays of TGFβ-1 or endoglin (CD105). Human cardiomyocyte cell line AC16 was subjected to different stresses: 5% mild and 25% aggressive, at 1 Hz for 24 h. Immunofluorescence assays were used to estimate troponin I, CD105, SGLT1/2, eNOS, and ERK1/2 levels was performed for 5% (mild), and 25% elongation for 24 h. AMI (+) serum showed increased TGFβ1 and CD105 compared to AMI (-) patients. In consistent, troponin I, CD105, SGLT1/2, eNOS and ERK1/2 were upregulated after 25% of 24 h cyclic stretch. Dapagliflozin addition caused SGLT2 inhibition, which significantly decreased troponin I, CD105, SGLT1/2, eNOS, and ERK1/2 under 25% cyclic stretching. In summary, SGLT2 may have sensed mechanical stretch in a way similar to cardiac overloading as in vivo. By blocking SGLT2 in stretched cardiomyocytes, the AMI biomarkers (CD105, troponin I and P-ERK) were decreased, potentially to rescue eNOS production to maintain normal cellular function. This discovery of CD105 and SGLT2 increase in mechanically stretched cardiomyocytes suggests that SGLT2 may conceive a novel role in direct or indirect sensing of mechanical stretch, prompting the possibility of an in vitro cardiac overloaded cell model, an alternative to animal heart model.
钠-葡萄糖共转运蛋白 2 抑制剂(SGLT2i)通过未知机制在射血分数降低的心力衰竭(HFrEF)和急性心肌梗死(AMI)的治疗中迅速获得认可。研究发现,延长 SGLT2i 治疗可减轻病变心脏中 Na/H 交换器 1(NHE1)、SGLT1 和钙/钙调蛋白依赖性蛋白激酶 II(CaMKII)的上调。不幸的是,达格列净在多大程度上影响心肌细胞中的钠/钙稳态尚不清楚。在这项研究中,我们旨在研究心肌细胞中的机械拉伸是否会通过 ERK 和 eNOS 信号上调 SGLT2,导致钠/钙稳态失衡。使用 ELISA 测定 TGFβ-1 或内源性糖蛋白 130(CD105)来估计 AMI(+)和 AMI(-)血清水平。将人心肌细胞系 AC16 置于不同的应激下:5%轻度和 25%剧烈,1Hz,24 小时。进行免疫荧光测定以估计肌钙蛋白 I、CD105、SGLT1/2、eNOS 和 ERK1/2 水平,5%(轻度)和 25%伸长 24 小时。与 AMI(-)患者相比,AMI(+)血清中 TGFβ1 和 CD105 增加。一致的是,在 24 小时循环拉伸 25%后,肌钙蛋白 I、CD105、SGLT1/2、eNOS 和 ERK1/2 上调。达格列净的加入导致 SGLT2 抑制,在 25%循环拉伸下,明显降低肌钙蛋白 I、CD105、SGLT1/2、eNOS 和 ERK1/2。总之,SGLT2 可能以类似于体内心脏超负荷的方式感知机械拉伸。通过阻断拉伸心肌细胞中的 SGLT2,AMI 生物标志物(CD105、肌钙蛋白 I 和 P-ERK)减少,可能会挽救 eNOS 的产生以维持正常的细胞功能。在机械拉伸的心肌细胞中发现 CD105 和 SGLT2 增加,表明 SGLT2 可能在机械拉伸的直接或间接感知中发挥新的作用,从而有可能建立体外心脏超负荷细胞模型,作为动物心脏模型的替代。