Suppr超能文献

微生物组数据的降维将双歧杆菌和普雷沃氏菌与过敏性鼻炎联系起来。

Dimension reduction of microbiome data linked Bifidobacterium and Prevotella to allergic rhinitis.

机构信息

Genome Analytics Japan Inc., Tokyo, Japan.

Technology Strategy Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan.

出版信息

Sci Rep. 2024 Apr 5;14(1):7983. doi: 10.1038/s41598-024-57934-x.

Abstract

Dimension reduction has been used to visualise the distribution of multidimensional microbiome data, but the composite variables calculated by the dimension reduction methods have not been widely used to investigate the relationship of the human gut microbiome with lifestyle and disease. In the present study, we applied several dimension reduction methods, including principal component analysis, principal coordinate analysis (PCoA), non-metric multidimensional scaling (NMDS), and non-negative matrix factorization, to a microbiome dataset from 186 subjects with symptoms of  allergic rhinitis (AR) and 106 controls. All the dimension reduction methods supported that the distribution of microbial data points appeared to be continuous rather than discrete. Comparison of the composite variables calculated from the different dimension reduction methods showed that the characteristics of the composite variables differed depending on the distance matrices and the dimension reduction methods. The first composite variables calculated from PCoA and NMDS with the UniFrac distance were strongly associated with AR (FDR adjusted P = 2.4 × 10 for PCoA and P = 2.8 × 10 for NMDS), and also with the relative abundance of Bifidobacterium and Prevotella. The abundance of Bifidobacterium was also linked to intake of several nutrients, including carbohydrate, saturated fat, and alcohol via composite variables. Notably, the association between the composite variables and AR was much stronger than the association between the relative abundance of individual genera and AR. Our results highlight the usefulness of the dimension reduction methods for investigating the association of microbial composition with lifestyle and disease in clinical research.

摘要

降维已被用于可视化多维微生物组数据的分布,但降维方法计算的综合变量尚未广泛用于研究人类肠道微生物组与生活方式和疾病的关系。在本研究中,我们应用了几种降维方法,包括主成分分析、主坐标分析(PCoA)、非度量多维尺度分析(NMDS)和非负矩阵分解,对 186 名过敏性鼻炎(AR)症状患者和 106 名对照者的微生物组数据集进行分析。所有降维方法都表明微生物数据点的分布似乎是连续的而不是离散的。比较不同降维方法计算的综合变量表明,复合变量的特征取决于距离矩阵和降维方法。基于 UniFrac 距离的 PCoA 和 NMDS 计算的第一复合变量与 AR 密切相关(PCoA 的 FDR 调整 P 值为 2.4×10,NMDS 的 P 值为 2.8×10),并且与双歧杆菌和普雷沃氏菌的相对丰度也密切相关。双歧杆菌的丰度也与多种营养素的摄入有关,包括碳水化合物、饱和脂肪和酒精,这是通过复合变量实现的。值得注意的是,复合变量与 AR 之间的关联比个体属的相对丰度与 AR 之间的关联强得多。我们的研究结果强调了降维方法在临床研究中研究微生物组成与生活方式和疾病之间的关联的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/10995140/769b42098997/41598_2024_57934_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验