Suppr超能文献

达西·福希海默在考虑生物对流影响的情况下,对径向拉伸圆盘施加了指数型热源 - 汇和活化能。

Darcy Forchhiemer imposed exponential heat source-sink and activation energy with the effects of bioconvection over radially stretching disc.

作者信息

Nihaal K M, Mahabaleshwar U S, Joo S W

机构信息

Department of Studies in Mathematics, Davangere University, Shivagangothri, Davangere, 577 007, India.

School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Korea.

出版信息

Sci Rep. 2024 Apr 4;14(1):7910. doi: 10.1038/s41598-024-58051-5.

Abstract

The Darcy-Forchheimer model is a commonly used and accurate method for simulating flow in porous media, proving beneficial for fluid separation, heat exchange, subsurface fluid transfer, filtration, and purification. The current study aims to describe heat and mass transfer in ternary nanofluid flow on a radially stretched sheet with activation energy. The velocity equation includes Darcy-Fochheimer porous media effects. The novelty of this study is enhanced by incorporating gyrotactic microorganisms which are versatile and in nanofluid can greatly improve the thermal conductivity and heat transfer properties of the base fluid, resulting in more efficient heat transfer systems. Furthermore, the governing PDEs are reduced to ODEs via appropriate similarity transformations. The influence of numerous parameters is expanded and physically depicted through the graphical illustration. As the Forchheimer number escalates, so do the medium's porosity and drag coefficient, resulting in more resistive forces and, as a result, lowering fluid velocity. It has been discovered that increasing the exponential heat source/sink causes convective flows that are deficient to transport heat away efficiently, resulting in a slower heat transfer rate. The concentration profile accumulates when the activation energy is large, resulting in a drop in the mass transfer rate. It is observed that the density of motile microorganisms increases with a rise in the Peclet number. Further, the results of the major engineering coefficients Skin-friction, Nusselt number, Sherwood number, and Microorganism density number are numerically examined and tabulated. Also, the numerical outcomes were found to be identical to the previous study.

摘要

达西 - 福希海默模型是模拟多孔介质中流动常用且准确的方法,对流体分离、热交换、地下流体传输、过滤和净化有益。当前研究旨在描述具有活化能的径向拉伸薄板上三元纳米流体流动中的传热传质。速度方程包括达西 - 福希海默多孔介质效应。本研究的新颖之处在于纳入了趋旋光性微生物,其具有多功能性,在纳米流体中可极大提高基液的热导率和传热性能,从而产生更高效的传热系统。此外,通过适当的相似变换将控制偏微分方程简化为常微分方程。通过图形说明扩展并物理描述了众多参数的影响。随着福希海默数增加,介质的孔隙率和阻力系数也增加,导致阻力更大,进而降低流体速度。已发现增加指数热源/热汇会导致对流流动不足以有效带走热量,从而使传热速率变慢。当活化能较大时,浓度分布会累积,导致传质速率下降。观察到能动微生物的密度随佩克莱数增加而增加。此外,对主要工程系数摩擦系数、努塞尔数、舍伍德数和微生物密度数的结果进行了数值研究并制成表格。而且,发现数值结果与先前研究相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8e/10995143/13b5532ec325/41598_2024_58051_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验