Suppr超能文献

通过低温等离子体改性提高石墨烯纳米片的反应活性

Enhancing Graphene Nanoplatelet Reactivity through Low-Temperature Plasma Modification.

作者信息

Kadela Karolina, Grzybek Gabriela, Kotarba Andrzej, Stelmachowski Paweł

机构信息

Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.

出版信息

ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19771-19779. doi: 10.1021/acsami.4c01226. Epub 2024 Apr 4.

Abstract

Graphene-based materials have great potential for applications in many fields, but their poor dispersion in polar solvents and chemical inertness require improvements. Low-temperature plasma allows the precise modification of materials, improving the physicochemical properties of the surface and thus creating the possibility of their potential use. Plasma treatment offers the possibility of introducing oxygen functional groups simply, rapidly, and in a controlled way. In this work, a systematic investigation of the effect of plasma modification on graphene nanoplatelets has been carried out to determine the optimal plasma parameters, especially the exposure time, for introducing the highest amount of oxygen functional groups on a surface. Different gases (O, CO, air, Ar, and CH) were used for this purpose. The chemical nature of the introduced oxygen-containing functionalities was characterized by X-ray photoelectron spectroscopy, and the structural properties of the materials were studied by Raman spectroscopy. The plasma-induced changes have been shown to evolve as the surface functionalities observed after plasma treatment are unstable. The immersion of the materials in liquids was carried out to check the reactivity of carbons in postplasma reactions. Stabilization of the material's surface after plasma treatment using CHCOOH was the most effective for introducing oxygen functional groups.

摘要

基于石墨烯的材料在许多领域具有巨大的应用潜力,但其在极性溶剂中的分散性差和化学惰性需要改进。低温等离子体能够对材料进行精确改性,改善其表面的物理化学性质,从而为其潜在应用创造可能性。等离子体处理提供了以简单、快速且可控的方式引入氧官能团的可能性。在这项工作中,对等离子体改性对石墨烯纳米片的影响进行了系统研究,以确定引入表面上最大量氧官能团的最佳等离子体参数,特别是暴露时间。为此使用了不同的气体(氧气、一氧化碳、空气、氩气和甲烷)。通过X射线光电子能谱对引入的含氧官能团的化学性质进行了表征,并通过拉曼光谱研究了材料的结构性质。由于等离子体处理后观察到的表面官能团不稳定,已表明等离子体诱导的变化会逐渐演变。将材料浸入液体中以检查等离子体后反应中碳的反应性。使用乙酸对等离子体处理后的材料表面进行稳定化处理对于引入氧官能团最为有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a653/11040526/824e41dc9f76/am4c01226_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验