Suppr超能文献

基于多模态磁共振联合B7-H3 mRNA的列线图在食管癌术前淋巴结预测中的应用

Nomogram based on multimodal magnetic resonance combined with B7-H3mRNA for preoperative lymph node prediction in esophagus cancer.

作者信息

Xu Yan-Han, Lu Peng, Gao Ming-Cheng, Wang Rui, Li Yang-Yang, Guo Rong-Qi, Zhang Wei-Song, Song Jian-Xiang

机构信息

School of Clinical Sciences, Graduate School of Nantong University, Yancheng 226019, Jiangsu Province, China.

Department of Thoracic Surgery, Yancheng Third People's Hospital, The Affiliated Hospital 6 of Nantong University, Yancheng 224000, Jiangsu Province, China.

出版信息

World J Clin Oncol. 2024 Mar 24;15(3):419-433. doi: 10.5306/wjco.v15.i3.419.

Abstract

BACKGROUND

Accurate preoperative prediction of lymph node metastasis (LNM) in esophageal cancer (EC) patients is of crucial clinical significance for treatment planning and prognosis.

AIM

To develop a clinical radiomics nomogram that can predict the preoperative lymph node (LN) status in EC patients.

METHODS

A total of 32 EC patients confirmed by clinical pathology (who underwent surgical treatment) were included. Real-time fluorescent quantitative reverse transcription-polymerase chain reaction was used to detect the expression of B7-H3 mRNA in EC tissue obtained during preoperative gastroscopy, and its correlation with LNM was analyzed. Radiomics features were extracted from multi-modal magnetic resonance imaging of EC using Pyradiomics in Python. Feature extraction, data dimensionality reduction, and feature selection were performed using XGBoost model and leave-one-out cross-validation. Multivariable logistic regression analysis was used to establish the prediction model, which included radiomics features, LN status from computed tomography (CT) reports, and B7-H3 mRNA expression, represented by a radiomics nomogram. Receiver operating characteristic area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the predictive performance and clinical application value of the model.

RESULTS

The relative expression of B7-H3 mRNA in EC patients with LNM was higher than in those without metastasis, and the difference was statistically significant ( < 0.05). The AUC value in the receiver operating characteristic (ROC) curve was 0.718 (95%CI: 0.528-0.907), with a sensitivity of 0.733 and specificity of 0.706, indicating good diagnostic performance. The individualized clinical prediction nomogram included radiomics features, LN status from CT reports, and B7-H3 mRNA expression. The ROC curve demonstrated good diagnostic value, with an AUC value of 0.765 (95%CI: 0.598-0.931), sensitivity of 0.800, and specificity of 0.706. DCA indicated the practical value of the radiomics nomogram in clinical practice.

CONCLUSION

This study developed a radiomics nomogram that includes radiomics features, LN status from CT reports, and B7-H3 mRNA expression, enabling convenient preoperative individualized prediction of LNM in EC patients.

摘要

背景

准确术前预测食管癌(EC)患者的淋巴结转移(LNM)对于治疗方案规划和预后具有至关重要的临床意义。

目的

开发一种可预测EC患者术前淋巴结(LN)状态的临床影像组学列线图。

方法

纳入32例经临床病理确诊(接受手术治疗)的EC患者。采用实时荧光定量逆转录-聚合酶链反应检测术前胃镜获取的EC组织中B7-H3 mRNA的表达,并分析其与LNM的相关性。使用Python中的Pyradiomics从EC的多模态磁共振成像中提取影像组学特征。采用XGBoost模型和留一法交叉验证进行特征提取、数据降维和特征选择。使用多变量逻辑回归分析建立预测模型,该模型包括影像组学特征、计算机断层扫描(CT)报告中的LN状态以及以影像组学列线图表示的B7-H3 mRNA表达。采用受试者操作特征曲线下面积(AUC)和决策曲线分析(DCA)评估模型的预测性能和临床应用价值。

结果

LNM的EC患者中B7-H3 mRNA的相对表达高于无转移患者,差异具有统计学意义(<0.05)。受试者操作特征(ROC)曲线中的AUC值为0.718(95%CI:0.528 - 0.907),灵敏度为0.733,特异度为0.706,表明诊断性能良好。个体化临床预测列线图包括影像组学特征、CT报告中的LN状态以及B7-H3 mRNA表达。ROC曲线显示出良好的诊断价值,AUC值为0.765(95%CI:0.598 - 0.931),灵敏度为0.800,特异度为0.706。DCA表明影像组学列线图在临床实践中的实用价值。

结论

本研究开发了一种影像组学列线图,其包括影像组学特征、CT报告中的LN状态以及B7-H3 mRNA表达,能够方便地对EC患者术前LNM进行个体化预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e214/10989267/c1de9d7b08aa/WJCO-15-419-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验