文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于术前磁共振成像放射组学的signature 模型:预测早期乳腺癌患者腋窝淋巴结转移和无病生存的研究

Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.

机构信息

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.

Imaging Diagnostic and Interventional Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.

出版信息

JAMA Netw Open. 2020 Dec 1;3(12):e2028086. doi: 10.1001/jamanetworkopen.2020.28086.


DOI:10.1001/jamanetworkopen.2020.28086
PMID:33289845
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7724560/
Abstract

IMPORTANCE: Axillary lymph node metastasis (ALNM) status, typically estimated using an invasive procedure with a high false-negative rate, strongly affects the prognosis of recurrence in breast cancer. However, preoperative noninvasive tools to accurately predict ALNM status and disease-free survival (DFS) are lacking. OBJECTIVE: To develop and validate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomic signatures for preoperative identification of ALNM and to assess individual DFS in patients with early-stage breast cancer. DESIGN, SETTING, AND PARTICIPANTS: This retrospective prognostic study included patients with histologically confirmed early-stage breast cancer diagnosed at 4 hospitals in China from July 3, 2007, to September 21, 2019, randomly divided (7:3) into development and vaidation cohorts. All patients underwent preoperative MRI scans, were treated with surgery and sentinel lymph node biopsy or ALN dissection, and were pathologically examined to determine the ALNM status. Data analysis was conducted from February 15, 2019, to March 20, 2020. EXPOSURE: Clinical and DCE-MRI radiomic signatures. MAIN OUTCOMES AND MEASURES: The primary end points were ALNM and DFS. RESULTS: This study included 1214 women (median [IQR] age, 47 [42-55] years), split into development (849 [69.9%]) and validation (365 [30.1%]) cohorts. The radiomic signature identified ALNM in the development and validation cohorts with areas under the curve (AUCs) of 0.88 and 0.85, respectively, and the clinical-radiomic nomogram accurately predicted ALNM in the development and validation cohorts (AUC, 0.92 and 0.90, respectively) based on a least absolute shrinkage and selection operator (LASSO)-logistic regression model. The radiomic signature predicted 3-year DFS in the development and validation cohorts (AUC, 0.81 and 0.73, respectively), and the clinical-radiomic nomogram could discriminate high-risk from low-risk patients in the development cohort (hazard ratio [HR], 0.04; 95% CI, 0.01-0.11; P < .001) and the validation cohort (HR, 0.04; 95% CI, 0.004-0.32; P < .001) based on a random forest-Cox regression model. The clinical-radiomic nomogram was associated with 3-year DFS in the development and validation cohorts (AUC, 0.89 and 0.90, respectively). The decision curve analysis demonstrated that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone. CONCLUSIONS AND RELEVANCE: This study described the application of MRI-based machine learning in patients with breast cancer, presenting novel individualized clinical decision nomograms that could be used to predict ALNM status and DFS. The clinical-radiomic nomograms were useful in clinical decision-making associated with personalized selection of surgical interventions and therapeutic regimens for patients with early-stage breast cancer.

摘要

重要性:腋窝淋巴结转移(ALNM)状态通常通过具有高假阴性率的侵入性程序来估计,强烈影响乳腺癌的复发预后。然而,缺乏术前非侵入性工具来准确预测 ALNM 状态和无病生存(DFS)。 目的:开发和验证动态对比增强磁共振成像(DCE-MRI)的放射组学特征,用于术前识别 ALNM,并评估早期乳腺癌患者的个体 DFS。 设计、设置和参与者:这是一项回顾性预后研究,纳入了 2007 年 7 月 3 日至 2019 年 9 月 21 日在中国 4 家医院确诊的组织学证实的早期乳腺癌患者,随机(7:3)分为开发和验证队列。所有患者均接受术前 MRI 扫描,接受手术和前哨淋巴结活检或 ALN 解剖,并进行病理检查以确定 ALNM 状态。数据分析于 2019 年 2 月 15 日至 2020 年 3 月 20 日进行。 暴露:临床和 DCE-MRI 放射组学特征。 主要结果和措施:主要终点是 ALNM 和 DFS。 结果:这项研究纳入了 1214 名女性(中位数[IQR]年龄,47[42-55]岁),分为开发(849[69.9%])和验证(365[30.1%])队列。放射组学特征在开发和验证队列中识别 ALNM 的曲线下面积(AUC)分别为 0.88 和 0.85,而临床-放射组学列线图基于最小绝对收缩和选择算子(LASSO)-逻辑回归模型准确预测了开发和验证队列中的 ALNM(AUC,分别为 0.92 和 0.90)。放射组学特征预测了开发和验证队列的 3 年 DFS(AUC,分别为 0.81 和 0.73),临床-放射组学列线图可在开发队列中区分高危和低危患者(风险比[HR],0.04;95%CI,0.01-0.11;P<.001)和验证队列(HR,0.04;95%CI,0.004-0.32;P<.001)基于随机森林-Cox 回归模型。临床-放射组学列线图与开发和验证队列的 3 年 DFS 相关(AUC,分别为 0.89 和 0.90)。决策曲线分析表明,临床-放射组学列线图比临床或放射组学特征单独具有更好的临床预测有用性。 结论和相关性:本研究描述了基于 MRI 的机器学习在乳腺癌患者中的应用,提出了新的个体化临床决策列线图,可用于预测 ALNM 状态和 DFS。临床-放射组学列线图在与早期乳腺癌患者的手术干预和治疗方案的个体化选择相关的临床决策中具有实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/b1addf0a04b1/jamanetwopen-e2028086-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/09a158384ae0/jamanetwopen-e2028086-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/0103b28ad13e/jamanetwopen-e2028086-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/b1addf0a04b1/jamanetwopen-e2028086-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/09a158384ae0/jamanetwopen-e2028086-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/0103b28ad13e/jamanetwopen-e2028086-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ee/7724560/b1addf0a04b1/jamanetwopen-e2028086-g003.jpg

相似文献

[1]
Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.

JAMA Netw Open. 2020-12-1

[2]
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.

EBioMedicine. 2021-7

[3]
Radiomic Nomogram for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer.

Acad Radiol. 2024-3

[4]
Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer.

Eur Radiol. 2019-7

[5]
Radiomic features of axillary lymph nodes based on pharmacokinetic modeling DCE-MRI allow preoperative diagnosis of their metastatic status in breast cancer.

PLoS One. 2021

[6]
Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram.

Contrast Media Mol Imaging. 2022

[7]
Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics.

Br J Radiol. 2024-2-2

[8]
Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.

J Magn Reson Imaging. 2018-9-1

[9]
Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer.

Eur J Radiol. 2019-9-7

[10]
Radiomics nomogram for predicting axillary lymph node metastasis in breast cancer based on DCE-MRI: A multicenter study.

J Xray Sci Technol. 2023

引用本文的文献

[1]
Development of a Machine Learning Model Integrating Pathomics and Clinical Data to Predict Axillary Lymph Node Metastasis in Breast Cancer: A Two-Center Study.

Cancer Rep (Hoboken). 2025-9

[2]
Contrast-enhanced ultrasound radiomics model for predicting axillary lymph node metastasis and prognosis in breast cancer: a multicenter study.

BMC Cancer. 2025-8-14

[3]
Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models.

Diagnostics (Basel). 2025-7-29

[4]
Multi-omics prediction of axillary treatment response and tumour microenvironment alterations in lymph node-positive luminal breast cancer.

Cell Death Dis. 2025-8-4

[5]
Dynamic contrast-enhanced MRI-based radiomics model of intra-tumoral kinetic heterogeneity for predicting breast cancer molecular subtypes.

Front Mol Biosci. 2025-7-18

[6]
Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast cancer.

Sci Rep. 2025-7-18

[7]
The Role of Multiparametric MRI Radiomics for Preoperative Prediction of Axillary Lymph Node Metastasis in Patients With Invasive Breast Cancer: A Comparative Study.

Cancer Innov. 2025-7-13

[8]
Prognostic value of a lncRNA signature in early-stage invasive breast cancer patients.

Cancer Cell Int. 2025-6-24

[9]
Preoperative prediction of HER2 expression and sentinel lymph node status in breast cancer using a mammography radiomics model.

Front Oncol. 2025-6-4

[10]
Machine learning-based MRI radiomics predict IL18 expression and overall survival of low-grade glioma patients.

NPJ Precis Oncol. 2025-6-19

本文引用的文献

[1]
Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer.

Nat Commun. 2020-3-6

[2]
International evaluation of an AI system for breast cancer screening.

Nature. 2020-1-1

[3]
Radiomics Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Sentinel Lymph Node Metastasis in Breast Cancer.

Front Oncol. 2019-9-30

[4]
Clinical Outcomes in Early Breast Cancer With a High 21-Gene Recurrence Score of 26 to 100 Assigned to Adjuvant Chemotherapy Plus Endocrine Therapy: A Secondary Analysis of the TAILORx Randomized Clinical Trial.

JAMA Oncol. 2020-3-1

[5]
Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer.

N Engl J Med. 2019-6-3

[6]
Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.

J Magn Reson Imaging. 2018-9-1

[7]
Clinical relevance of the 21-gene Recurrence Score assay in treatment decisions for patients with node-positive breast cancer in the genomic era.

NPJ Breast Cancer. 2018-8-20

[8]
Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer.

Clin Cancer Res. 2018-6-18

[9]
Systematic review of the clinical and economic value of gene expression profiles for invasive early breast cancer available in Europe.

Cancer Treat Rev. 2017-11-6

[10]
Limitations of Personalized Medicine and Gene Assays for Breast Cancer.

Cureus. 2017-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索