文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射组学简介。

Introduction to Radiomics.

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York

Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

出版信息

J Nucl Med. 2020 Apr;61(4):488-495. doi: 10.2967/jnumed.118.222893. Epub 2020 Feb 14.


DOI:10.2967/jnumed.118.222893
PMID:32060219
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9374044/
Abstract

Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative metrics-the so-called radiomic features-within medical images. Radiomic features capture tissue and lesion characteristics such as heterogeneity and shape and may, alone or in combination with demographic, histologic, genomic, or proteomic data, be used for clinical problem solving. The goal of this continuing education article is to provide an introduction to the field, covering the basic radiomics workflow: feature calculation and selection, dimensionality reduction, and data processing. Potential clinical applications in nuclear medicine that include PET radiomics-based prediction of treatment response and survival will be discussed. Current limitations of radiomics, such as sensitivity to acquisition parameter variations, and common pitfalls will also be covered.

摘要

放射组学是一个快速发展的研究领域,专注于从医学图像中提取定量指标,即所谓的放射组学特征。放射组学特征可捕获组织和病变特征,如异质性和形状,并且可以单独或与人口统计学、组织学、基因组学或蛋白质组学数据结合使用,以解决临床问题。本文旨在提供该领域的简介,涵盖基本的放射组学工作流程:特征计算和选择、降维和数据处理。还将讨论核医学中的潜在临床应用,包括基于 PET 放射组学预测治疗反应和生存。还将涵盖放射组学的当前局限性,例如对采集参数变化的敏感性以及常见的陷阱。

相似文献

[1]
Introduction to Radiomics.

J Nucl Med. 2020-2-14

[2]
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges.

Int J Radiat Oncol Biol Phys. 2018-5-22

[3]
Nuclear medicine radiomics in precision medicine: why we can't do without artificial intelligence.

Q J Nucl Med Mol Imaging. 2020-9

[4]
Technical Note: Ontology-guided radiomics analysis workflow (O-RAW).

Med Phys. 2019-10-25

[5]
Radiomics: Data Are Also Images.

J Nucl Med. 2019-9

[6]
CT radiomics and PET radiomics: ready for clinical implementation?

Q J Nucl Med Mol Imaging. 2019-12

[7]
Radiomics and artificial intelligence applications in pediatric brain tumors.

World J Pediatr. 2024-8

[8]
Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer.

Med Phys. 2021-3

[9]
Radiomics and Artificial Intelligence in Renal Lesion Assessment.

Crit Rev Oncog. 2024

[10]
Ultrasound-based radiomics: current status, challenges and future opportunities.

Med Ultrason. 2022-12-21

引用本文的文献

[1]
Benchmarking feature projection methods in radiomics.

Sci Rep. 2025-9-5

[2]
Developing and validating a computed tomography radiomics strategy to predict lymph node metastasis in pancreatic cancer.

World J Radiol. 2025-8-28

[3]
Hybrid feature fusion in cervical cancer cytology: a novel dual-module approach framework for lesion detection and classification using radiomics, deep learning, and reproducibility.

Front Oncol. 2025-8-18

[4]
Early-stage diagnosis of HIV-associated neurocognitive disorders via multiple learning models based on resting-state functional magnetic resonance imaging.

Quant Imaging Med Surg. 2025-9-1

[5]
Integration of multi-omics approaches in exploring intra-tumoral heterogeneity.

Cancer Cell Int. 2025-8-29

[6]
Enhancing YOLOv11 with Large Kernel Attention and Multi-Scale Fusion for Accurate Small and Multi-Lesion Bone Tumor Detection in Radiographs.

Diagnostics (Basel). 2025-8-8

[7]
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma.

Bioengineering (Basel). 2025-8-6

[8]
Unlocking the potential of radiomics in identifying fibrosing and inflammatory patterns in interstitial lung disease.

Radiol Med. 2025-8-22

[9]
The Novel Achievements in Oncological Metabolic Radio-Therapy: Isotope Technologies, Targeted Theranostics, Translational Oncology Research.

Med Sci (Basel). 2025-8-1

[10]
Application of machine learning based on habitat imaging and vision transformer to predict treatment response of locally advanced esophageal squamous cell carcinoma following neoadjuvant chemoimmunotherapy: a multi-center study.

Front Immunol. 2025-8-6

本文引用的文献

[1]
Radiomic features of glucose metabolism enable prediction of outcome in mantle cell lymphoma.

Eur J Nucl Med Mol Imaging. 2019-7-8

[2]
Assessing radiomic feature robustness to interpolation in F-FDG PET imaging.

Sci Rep. 2019-7-4

[3]
Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis.

Eur J Nucl Med Mol Imaging. 2019-6-25

[4]
What can artificial intelligence teach us about the molecular mechanisms underlying disease?

Eur J Nucl Med Mol Imaging. 2019-6-12

[5]
Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma.

Clin Cancer Res. 2019-4-11

[6]
DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem.

Med Image Anal. 2019-5

[7]
Machine Learning in Nuclear Medicine: Part 1-Introduction.

J Nucl Med. 2019-2-7

[8]
Radiomics Analysis of PET and CT Components of PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma.

Mol Imaging Biol. 2019-10

[9]
Radiomic signature of F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits.

Theranostics. 2018-11-12

[10]
External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy.

Eur J Nucl Med Mol Imaging. 2018-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索