Berlanga Diego José, Molina Antonio, Torres Miguel Ángel
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
Front Plant Sci. 2024 Mar 21;15:1374194. doi: 10.3389/fpls.2024.1374194. eCollection 2024.
Mitogen-activated protein Kinase Phosphatase 1 (MKP1) negatively balances production of reactive oxygen species (ROS) triggered by Microbe-Associated Molecular Patterns (MAMPs) through uncharacterized mechanisms. Accordingly, ROS production is enhanced in mutant after MAMP treatment. Moreover, plants show a constitutive activation of immune responses and enhanced disease resistance to pathogens with distinct colonization styles, like the bacterium pv. tomato DC3000, the oomycete Noco2 and the necrotrophic fungus BMM. The molecular basis of this ROS production and broad-spectrum disease resistance controlled by MKP1 have not been determined. Here, we show that the enhanced ROS production in is not due to a direct interaction of MKP1 with the NADPH oxidase RBOHD, nor is it the result of the catalytic activity of MKP1 on RBHOD phosphorylation sites targeted by BOTRYTIS INDUCED KINASE 1 (BIK1) protein, a positive regulator of RBOHD-dependent ROS production. The analysis of double mutant phenotypes suggested that MKP1 and BIK1 targets are different. Additionally, we showed that phosphorylation residues stabilizing MKP1 are essential for its functionality in immunity. To further decipher the molecular basis of disease resistance responses controlled by MKP1, we generated combinatory lines of with plants impaired in defensive pathways required for disease resistance to pathogen: double mutant defective in synthesis of tryptophan-derived metabolites, transgenic plant that does not accumulate salicylic acid, mutant impaired in abscisic acid (ABA) biosynthesis, and triple mutant impaired in proteins described as ROS sensors and that is hypersensitive to ABA. The analysis of these lines revealed that the enhanced resistance displayed by is altered in distinct mutant combinations: fully blocked resistance to , whereas displays partial susceptibility to , and , and showed compromised resistance to . These results suggest that MKP1 is a component of immune responses that does not directly interact with RBOHD but rather regulates the status of distinct defensive pathways required for disease resistance to pathogens with different lifestyles.
丝裂原活化蛋白激酶磷酸酶1(MKP1)通过未知机制对微生物相关分子模式(MAMPs)触发的活性氧(ROS)产生进行负向平衡。因此,在MAMP处理后,突变体中的ROS产生增强。此外,植物表现出免疫反应的组成型激活以及对具有不同定殖方式的病原体(如番茄细菌性斑点病菌pv. tomato DC3000、卵菌Noco2和坏死营养型真菌BMM)的抗病性增强。由MKP1控制的这种ROS产生和广谱抗病性的分子基础尚未确定。在这里,我们表明,突变体中ROS产生的增强不是由于MKP1与NADPH氧化酶RBOHD的直接相互作用,也不是MKP1对由葡萄孢诱导激酶1(BIK1)蛋白靶向的RBHOD磷酸化位点具有催化活性的结果,BIK1蛋白是RBOHD依赖性ROS产生的正向调节因子。对双突变体表型的分析表明,MKP1和BIK1的作用靶点不同。此外,我们表明稳定MKP1的磷酸化残基对其免疫功能至关重要。为了进一步破译由MKP1控制的抗病反应的分子基础,我们构建了与抗病所需防御途径受损的植物的组合品系:色氨酸衍生代谢物合成缺陷的双突变体、不积累水杨酸的转基因植物、脱落酸(ABA)生物合成受损的突变体以及被描述为ROS传感器且对ABA过敏的三重突变体。对这些品系的分析表明,突变体表现出的增强抗性在不同的突变组合中发生了改变:完全阻断了对的抗性,而对表现出部分易感性,并且、和对的抗性受损。这些结果表明,MKP1是免疫反应的一个组成部分,它不直接与RBOHD相互作用,而是调节对不同生活方式病原体的抗病性所需的不同防御途径的状态。