Suppr超能文献

预测克罗恩病肠切除术后短期主要并发症:一项基于机器学习的研究。

Predicting short-term major postoperative complications in intestinal resection for Crohn's disease: A machine learning-based study.

作者信息

Wang Fang-Tao, Lin Yin, Yuan Xiao-Qi, Gao Ren-Yuan, Wu Xiao-Cai, Xu Wei-Wei, Wu Tian-Qi, Xia Kai, Jiao Yi-Ran, Yin Lu, Chen Chun-Qiu

机构信息

Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.

出版信息

World J Gastrointest Surg. 2024 Mar 27;16(3):717-730. doi: 10.4240/wjgs.v16.i3.717.

Abstract

BACKGROUND

Due to the complexity and numerous comorbidities associated with Crohn's disease (CD), the incidence of postoperative complications is high, significantly impacting the recovery and prognosis of patients. Consequently, additional studies are required to precisely predict short-term major complications following intestinal resection (IR), aiding surgical decision-making and optimizing patient care.

AIM

To construct novel models based on machine learning (ML) to predict short-term major postoperative complications in patients with CD following IR.

METHODS

A retrospective analysis was performed on clinical data derived from a patient cohort that underwent IR for CD from January 2017 to December 2022. The study participants were randomly allocated to either a training cohort or a validation cohort. The logistic regression and random forest (RF) were applied to construct models in the training cohort, with model discrimination evaluated using the area under the curves (AUC). The validation cohort assessed the performance of the constructed models.

RESULTS

Out of the 259 patients encompassed in the study, 5.0% encountered major postoperative complications (Clavien-Dindo ≥ III) within 30 d following IR for CD. The AUC for the logistic model was 0.916, significantly lower than the AUC of 0.965 for the RF model. The logistic model incorporated a preoperative CD activity index (CDAI) of ≥ 220, a diminished preoperative serum albumin level, conversion to laparotomy surgery, and an extended operation time. A nomogram for the logistic model was plotted. Except for the surgical approach, the other three variables ranked among the top four important variables in the novel ML model.

CONCLUSION

Both the nomogram and RF exhibited good performance in predicting short-term major postoperative complications in patients with CD, with the RF model showing more superiority. A preoperative CDAI of ≥ 220, a diminished preoperative serum albumin level, and an extended operation time might be the most crucial variables. The findings of this study can assist clinicians in identifying patients at a higher risk for complications and offering personalized perioperative management to enhance patient outcomes.

摘要

背景

由于克罗恩病(CD)的复杂性及众多合并症,术后并发症发生率较高,严重影响患者的康复及预后。因此,需要更多研究来精准预测肠道切除术(IR)后的短期主要并发症,以辅助手术决策并优化患者护理。

目的

构建基于机器学习(ML)的新型模型,以预测CD患者IR术后的短期主要并发症。

方法

对2017年1月至2022年12月因CD接受IR的患者队列的临床数据进行回顾性分析。研究参与者被随机分配到训练队列或验证队列。在训练队列中应用逻辑回归和随机森林(RF)构建模型,使用曲线下面积(AUC)评估模型辨别力。验证队列评估所构建模型的性能。

结果

该研究纳入的259例患者中,5.0%在CD的IR术后30天内出现主要术后并发症(Clavien-Dindo≥III级)。逻辑模型的AUC为0.916,显著低于RF模型的0.965。逻辑模型纳入了术前CD活动指数(CDAI)≥220、术前血清白蛋白水平降低、转为开腹手术及手术时间延长。绘制了逻辑模型的列线图。除手术方式外,其他三个变量在新型ML模型中位列前四个重要变量。

结论

列线图和RF在预测CD患者术后短期主要并发症方面均表现良好,RF模型更具优势。术前CDAI≥220、术前血清白蛋白水平降低及手术时间延长可能是最关键的变量。本研究结果可帮助临床医生识别并发症风险较高的患者,并提供个性化围手术期管理以改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9742/10989335/0d18370624b4/WJGS-16-717-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验