Suppr超能文献

机器学习在预测克罗恩病术后并发症中的应用

Machine learning in predicting postoperative complications in Crohn's disease.

作者信息

Zhang Li-Fan, Chen Liu-Xiang, Yang Wen-Juan, Hu Bing

机构信息

Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

出版信息

World J Gastrointest Surg. 2024 Aug 27;16(8):2745-2747. doi: 10.4240/wjgs.v16.i8.2745.

Abstract

Crohn's disease (CD) is a chronic inflammatory bowel disease of unknown origin that can cause significant disability and morbidity with its progression. Due to the unique nature of CD, surgery is often necessary for many patients during their lifetime, and the incidence of postoperative complications is high, which can affect the prognosis of patients. Therefore, it is essential to identify and manage postoperative complications. Machine learning (ML) has become increasingly important in the medical field, and ML-based models can be used to predict postoperative complications of intestinal resection for CD. Recently, a valuable article titled "Predicting short-term major postoperative complications in intestinal resection for Crohn's disease: A machine learning-based study" was published by Wang . We appreciate the authors' creative work, and we are willing to share our views and discuss them with the authors.

摘要

克罗恩病(CD)是一种病因不明的慢性炎症性肠病,随着病情进展可导致严重的残疾和发病。由于CD的独特性质,许多患者在其一生中常常需要进行手术,且术后并发症的发生率很高,这会影响患者的预后。因此,识别和处理术后并发症至关重要。机器学习(ML)在医学领域变得越来越重要,基于ML的模型可用于预测CD肠切除术后的并发症。最近,王发表了一篇有价值的文章,题为《预测克罗恩病肠切除术后短期主要并发症:一项基于机器学习的研究》。我们赞赏作者的创造性工作,并且愿意与作者分享我们的观点并进行讨论。

相似文献

5
Visceral adiposity and inflammatory bowel disease.内脏肥胖与炎症性肠病。
Int J Colorectal Dis. 2021 Nov;36(11):2305-2319. doi: 10.1007/s00384-021-03968-w. Epub 2021 Jun 9.
6
A comprehensive review and update on Crohn's disease.克罗恩病的全面综述与更新
Dis Mon. 2018 Feb;64(2):20-57. doi: 10.1016/j.disamonth.2017.07.001. Epub 2017 Aug 18.

本文引用的文献

5
Selective oversampling approach for strongly imbalanced data.针对严重不平衡数据的选择性过采样方法。
PeerJ Comput Sci. 2021 Jun 18;7:e604. doi: 10.7717/peerj-cs.604. eCollection 2021.
8
Oversampling in Health Surveys: Why, When, and How?健康调查中的过采样:为何、何时以及如何进行?
Am J Public Health. 2017 Aug;107(8):1214-1215. doi: 10.2105/AJPH.2017.303895. Epub 2017 Jun 28.
9
Crohn's disease.克罗恩病。
Lancet. 2017 Apr 29;389(10080):1741-1755. doi: 10.1016/S0140-6736(16)31711-1. Epub 2016 Dec 1.
10
Gender imbalance in pediatric palliative care research samples.儿科姑息治疗研究样本中的性别失衡。
Palliat Med. 2010 Jun;24(4):435-44. doi: 10.1177/0269216309354396. Epub 2009 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验