Suppr超能文献

应用可解释的机器学习算法预测全直肠系膜切除术后患者永久性造口的危险因素。

Applying interpretable machine learning algorithms to predict risk factors for permanent stoma in patients after TME.

作者信息

Liu Yuan, Zhao Songyun, Du Wenyi, Tian Zhiqiang, Chi Hao, Chao Cheng, Shen Wei

机构信息

Department of General Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China.

Clinical Medical College, Southwest Medical University, Luzhou, China.

出版信息

Front Surg. 2023 Mar 24;10:1125875. doi: 10.3389/fsurg.2023.1125875. eCollection 2023.

Abstract

OBJECTIVE

The purpose of this study was to develop a machine learning model to identify preoperative and intraoperative high-risk factors and to predict the occurrence of permanent stoma in patients after total mesorectal excision (TME).

METHODS

A total of 1,163 patients with rectal cancer were included in the study, including 142 patients with permanent stoma. We collected 24 characteristic variables, including patient demographic characteristics, basic medical history, preoperative examination characteristics, type of surgery, and intraoperative information. Four machine learning algorithms including extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM) and k-nearest neighbor algorithm (KNN) were applied to construct the model and evaluate the model using k-fold cross validation method, ROC curve, calibration curve, decision curve analysis (DCA) and external validation.

RESULTS

The XGBoost algorithm showed the best performance among the four prediction models. The ROC curve results showed that XGBoost had a high predictive accuracy with an AUC value of 0.987 in the training set and 0.963 in the validation set. The k-fold cross-validation method was used for internal validation, and the XGBoost model was stable. The calibration curves showed high predictive power of the XGBoost model. DCA curves showed higher benefit rates for patients who received interventional treatment under the XGBoost model. The AUC value for the external validation set was 0.89, indicating that the XGBoost prediction model has good extrapolation.

CONCLUSION

The prediction model for permanent stoma in patients with rectal cancer derived from the XGBoost machine learning algorithm in this study has high prediction accuracy and clinical utility.

摘要

目的

本研究旨在开发一种机器学习模型,以识别术前和术中的高危因素,并预测全直肠系膜切除术(TME)患者永久性造口的发生情况。

方法

本研究共纳入1163例直肠癌患者,其中142例有永久性造口。我们收集了24个特征变量,包括患者人口统计学特征、基本病史、术前检查特征、手术类型和术中信息。应用包括极端梯度提升(XGBoost)、随机森林(RF)、支持向量机(SVM)和k近邻算法(KNN)在内的四种机器学习算法构建模型,并采用k折交叉验证法、ROC曲线、校准曲线、决策曲线分析(DCA)和外部验证对模型进行评估。

结果

XGBoost算法在四个预测模型中表现最佳。ROC曲线结果显示,XGBoost在训练集中具有较高的预测准确性,AUC值为0.987,在验证集中为0.963。采用k折交叉验证法进行内部验证,XGBoost模型稳定。校准曲线显示XGBoost模型具有较高的预测能力。DCA曲线显示,在XGBoost模型下接受介入治疗的患者受益率更高。外部验证集的AUC值为0.89,表明XGBoost预测模型具有良好的外推性。

结论

本研究中基于XGBoost机器学习算法得出的直肠癌患者永久性造口预测模型具有较高的预测准确性和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e61a/10079943/c2c1cb86c9ee/fsurg-10-1125875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验