Suppr超能文献

美国退伍军人事务部大数据科学:提升国家应对当前及未来大流行的模式。

VA Big Data Science: A Model for Improved National Pandemic Response Present and Future.

作者信息

Young-Xu Yinong, Davey Victoria, Marconi Vincent C, Cunningham Francesca E

机构信息

White River Junction Veterans Affairs Medical Center, Vermont.

Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.

出版信息

Fed Pract. 2023 Nov;40(11 Suppl 5):S39-S42. doi: 10.12788/fp.0412. Epub 2023 Nov 1.

Abstract

BACKGROUND

The US Department of Veterans Affairs (VA) enterprise approach to research (VA Research) has built a data-sharing framework available to all research teams within VA. Combined with robust analytic systems and tools available for investigators, VA Research has produced actionable results during the COVID-19 pandemic. Big data science techniques applied to VA's health care data demonstrate that medical research can be performed quickly and judiciously during nationwide health care emergencies.

OBSERVATIONS

We envision a common framework of data collection, management, and surveillance implemented in partnership with other health care agencies that would capture even broader, actionable, and timely observational data on populations, while providing opportunities for enhanced collaborative research across agencies. This model should be continued and expanded through the current COVID-19 and future pandemics.

CONCLUSIONS

Extending the achievements of VA Research in the COVID-19 pandemic to date, we advocate national goals of open science by working toward a synergistic national framework of anonymized, synchronized, shared health data that would provide researchers with potent tools to combat future public health crises.

摘要

背景

美国退伍军人事务部(VA)的企业研究方法(VA研究)构建了一个可供VA内所有研究团队使用的数据共享框架。结合可供研究人员使用的强大分析系统和工具,VA研究在新冠疫情期间产生了可付诸行动的成果。应用于VA医疗保健数据的大数据科学技术表明,在全国性医疗保健紧急情况期间,可以迅速且明智地开展医学研究。

观察结果

我们设想与其他医疗保健机构合作实施一个数据收集、管理和监测的通用框架,该框架将获取关于人群更广泛、可付诸行动且及时的观察数据,同时为跨机构加强合作研究提供机会。这种模式应在当前的新冠疫情及未来的大流行中持续并扩展。

结论

将VA研究在新冠疫情期间迄今取得的成就加以推广,我们倡导通过努力建立一个匿名、同步、共享的健康数据协同国家框架来实现开放科学的国家目标,该框架将为研究人员提供强大工具以应对未来的公共卫生危机。

相似文献

8

本文引用的文献

7
Risks and burdens of incident diabetes in long COVID: a cohort study.长期新冠患者新发糖尿病的风险与负担:一项队列研究。
Lancet Diabetes Endocrinol. 2022 May;10(5):311-321. doi: 10.1016/S2213-8587(22)00044-4. Epub 2022 Mar 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验