Poryvaev Artem S, Efremov Aleksandr A, Alimov Dmitry V, Smirnova Kristina A, Polyukhov Daniil M, Sagdeev Renad Z, Jacoutot Samuel, Marque Sylvain R A, Fedin Matvey V
International Tomography Center SB RAS Novosibirsk 630090 Russia
Novosibirsk State University Novosibirsk 630090 Russia.
Chem Sci. 2024 Mar 1;15(14):5268-5276. doi: 10.1039/d3sc05724k. eCollection 2024 Apr 3.
Metal-organic frameworks (MOFs) draw increasing attention as nanoenvironments for chemical reactions, especially in the field of catalysis. Knowing the specifics of MOF cavities is decisive in many of these cases; yet, obtaining them remains very challenging. We report the first direct assessment of the apparent polarity and solvent organization inside MOF cavities using a dedicated structurally flexible spin probe. A stable β-phosphorylated nitroxide radical was incorporated into the cavities of a prospective MOF ZIF-8 in trace amounts. The spectroscopic properties of this probe depend on local polarity, structuredness, stiffness and cohesive pressure and can be precisely monitored by Electron Paramagnetic Resonance (EPR) spectroscopy. Using this approach, we have demonstrated experimentally that the cavities of bare ZIF-8 are sensed by guest molecules as highly non-polar inside. When various alcohols fill the cavities, remarkable self-organization of solvent molecules is observed leading to a higher apparent polarity in MOFs compared to the corresponding bulk alcohols. Accounting for such nanoorganization phenomena can be crucial for optimization of chemical reactions in MOFs, and the proposed methodology provides unique routes to study MOF cavities inside , thus aiding in their various applications.
金属有机框架材料(MOFs)作为化学反应的纳米环境,尤其是在催化领域,越来越受到关注。在许多这类情况下,了解MOF空腔的具体情况是决定性的;然而,获取这些信息仍然极具挑战性。我们报告了首次使用专用的结构灵活的自旋探针直接评估MOF空腔内的表观极性和溶剂组织。一种稳定的β-磷酸化氮氧自由基以痕量形式掺入预期的MOF ZIF-8的空腔中。该探针的光谱性质取决于局部极性、结构、刚度和内聚压力,并且可以通过电子顺磁共振(EPR)光谱精确监测。使用这种方法,我们通过实验证明,裸ZIF-8的空腔被客体分子感知为内部高度非极性。当各种醇填充空腔时,观察到溶剂分子有显著的自组织现象,导致MOF中的表观极性高于相应的本体醇。考虑这种纳米组织现象对于优化MOF中的化学反应可能至关重要,并且所提出的方法提供了研究MOF内部空腔的独特途径,从而有助于它们的各种应用。