Suppr超能文献

结晶度对金属-有机框架中生物矿化过程中酶取向和动力学的影响。

Impact of Crystallinity on Enzyme Orientation and Dynamics upon Biomineralization in Metal-Organic Frameworks.

机构信息

Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States.

Davis High School, Fargo, North Dakota 58104, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 9;15(31):38124-38131. doi: 10.1021/acsami.3c07870. Epub 2023 Jul 26.

Abstract

Aqueous-phase co-crystallization (also known as biomimetic mineralization or biomineralization) is a unique way to encapsulate large enzymes, enzyme clusters, and enzymes with large substrates in metal-organic frameworks (MOFs), broadening the application of MOFs as enzyme carriers. The crystallinity of resultant enzyme@MOF biocomposites, however, can be low, raising a concern about how MOF crystal packing quality affects enzyme performance upon encapsulation. The challenges to overcome this concern are (1) the limited database of enzyme performance upon biomineralization in different aqueous MOFs and (2) the difficulty in probing enzyme restriction and motion in the resultant MOF scaffolds, which are related to the local crystal packing quality/density, under the interference of the MOF backgrounds. We have discovered several new aqueous MOFs for enzyme biomineralization with varied crystallinity [Jordahl, D.; Armstrong, Z.; Li, Q.; Gao, R.; Liu, W.; Johnson, K.; Brown, W.; Scheiwiller, A.; Feng, L.; Ugrinov, A.; Mao, H.; Chen, B.; Quadir, M.; Pan, Y.; Li, H.; Yang, Z. Expanding the Library of Metal-Organic Frameworks (MOFs) for Enzyme Biomineralization. 2022, 14 (46), 51619-51629, DOI: 10.1021/acsami.2c12998]. Here, we address the second challenge by probing enzyme dynamics/restriction in these MOFs at the residue level via site-directed spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, a unique approach to determine protein backbone motions regardless of the background complexity. We encapsulated a model large-substrate enzyme, lysozyme, in eight newly discovered MOFs, which possess various degrees of crystallization, via aqueous-phase co-crystallization. Through the EPR study and simulations, we found rough connections between (a) enzyme mobility/dynamics and MOF crystal properties (packing quality and density) and (b) enzyme areas exposed above each MOF and their catalytic performance. This work suggests that protein SDSL and EPR can serve as an indicator of MOF crystal packing quality/density when biomineralized in MOFs. The method can be generalized to probing the dynamics of other enzymes on other solid surfaces/interfaces and guide the rational design of solid platforms (ca. MOFs) to customize enzyme immobilization.

摘要

水相共晶(也称为仿生矿化或生物矿化)是一种将大酶、酶簇和大底物酶封装在金属有机骨架(MOFs)中的独特方法,拓宽了 MOFs 作为酶载体的应用。然而,所得酶@MOF 生物复合材料的结晶度可能较低,这引发了人们对 MOF 晶体堆积质量如何影响封装后酶性能的关注。克服这一担忧的挑战是(1)在不同的水相 MOFs 中进行酶仿生矿化时酶性能的有限数据库,以及(2)在 MOF 背景的干扰下,探测酶在所得 MOF 支架中的限制和运动的困难,这与局部晶体堆积质量/密度有关。我们已经发现了几种用于酶仿生矿化的新的水相 MOFs,其结晶度不同[Jordahl,D.;Armstrong,Z.;Li,Q.;Gao,R.;Liu,W.;Johnson,K.;Brown,W.;Scheiwiller,A.;Feng,L.;Ugrinov,A.;Mao,H.;Chen,B.;Quadir,M.;Pan,Y.;Li,H.;Yang,Z. 扩展用于酶仿生矿化的金属有机骨架(MOFs)库。2022 年,14(46),51619-51629,DOI:10.1021/acsami.2c12998]。在这里,我们通过定点自旋标记(SDSL)-电子顺磁共振(EPR)光谱来探测这些 MOFs 中酶动力学/限制的第二个挑战,这是一种确定蛋白质骨架运动的独特方法,无论背景复杂性如何。我们通过水相共晶法将一种模型大底物酶溶菌酶封装在八个新发现的 MOFs 中,这些 MOFs 的结晶度不同。通过 EPR 研究和模拟,我们发现(a)酶的流动性/动力学与 MOF 晶体性质(堆积质量和密度)以及(b)暴露在每个 MOF 上方的酶区域与其催化性能之间存在粗略的联系。这项工作表明,当在 MOFs 中进行仿生矿化时,蛋白质 SDSL 和 EPR 可以作为 MOF 晶体堆积质量/密度的指标。该方法可推广用于探测其他固体表面/界面上其他酶的动力学,并指导固态平台(约 MOFs)的合理设计以定制酶固定化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验