Suppr超能文献

通过工程化天冬酰胺连接酶形成叔酰胺键。

Tertiary amide bond formation by an engineered asparaginyl ligase.

作者信息

de Veer Simon J, Zhou Yan, Durek Thomas, Craik David J, Rehm Fabian B H

机构信息

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia

出版信息

Chem Sci. 2024 Mar 5;15(14):5248-5255. doi: 10.1039/d3sc06352f. eCollection 2024 Apr 3.

Abstract

Transpeptidases are powerful tools for site-specific protein modification, enabling the production of tailored biologics to investigate protein function and aiding the development of next-generation therapeutics and diagnostics. Although protein labelling at the N- or C-terminus is readily accomplished using a range of established transpeptidases, these reactions are generally limited to forming products that are linked by a standard (secondary) amide bond. Here we show that, unlike other widely used transpeptidases, an engineered asparaginyl ligase is able to efficiently synthesise tertiary amide bonds by accepting diverse secondary amine nucleophiles. These reactions proceed efficiently under mild conditions (near-neutral pH) and allow the optimal recognition elements for asparaginyl ligases (P1 Asn and P2'' Leu) to be preserved. Certain products, particularly proline-containing products, were found to be protected from recognition by the enzyme, allowing for straightforward sequential labelling of proteins. Additionally, incorporation of 4-azidoproline enables one-pot dual labelling directly at the ligation junction. These capabilities further expand the chemical diversity of asparaginyl ligase-catalysed reactions and provide an alternative approach for straightforward, successive modification of protein substrates.

摘要

转肽酶是用于位点特异性蛋白质修饰的强大工具,能够生产定制的生物制品以研究蛋白质功能,并有助于下一代治疗药物和诊断方法的开发。尽管使用一系列已确立的转肽酶可以轻松实现蛋白质在N端或C端的标记,但这些反应通常仅限于形成通过标准(二级)酰胺键连接的产物。在这里,我们表明,与其他广泛使用的转肽酶不同,一种工程化的天冬酰胺连接酶能够通过接受多种仲胺亲核试剂来有效合成叔酰胺键。这些反应在温和条件下(接近中性pH)高效进行,并能保留天冬酰胺连接酶的最佳识别元件(P1天冬酰胺和P2''亮氨酸)。发现某些产物,特别是含脯氨酸的产物,能免受该酶的识别,从而可以直接对蛋白质进行连续标记。此外,引入4-叠氮基脯氨酸可直接在连接位点进行一锅法双重标记。这些能力进一步扩展了天冬酰胺连接酶催化反应的化学多样性,并为直接、连续修饰蛋白质底物提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a32/10988630/25359f0eb5c6/d3sc06352f-f1.jpg

相似文献

1
Tertiary amide bond formation by an engineered asparaginyl ligase.
Chem Sci. 2024 Mar 5;15(14):5248-5255. doi: 10.1039/d3sc06352f. eCollection 2024 Apr 3.
2
pH-Controlled Protein Orthogonal Ligation Using Asparaginyl Peptide Ligases.
J Am Chem Soc. 2021 Jun 16;143(23):8704-8712. doi: 10.1021/jacs.1c02638. Epub 2021 Jun 7.
3
Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from .
Front Chem. 2021 Oct 22;9:768854. doi: 10.3389/fchem.2021.768854. eCollection 2021.
5
Structural determinants for peptide-bond formation by asparaginyl ligases.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11737-11746. doi: 10.1073/pnas.1818568116. Epub 2019 May 23.
6
Repurposing a plant peptide cyclase for targeted lysine acylation.
Nat Chem. 2024 Sep;16(9):1481-1489. doi: 10.1038/s41557-024-01520-1. Epub 2024 May 24.
7
Enzymatic C-to-C Protein Ligation.
Angew Chem Int Ed Engl. 2022 Mar 7;61(11):e202116672. doi: 10.1002/anie.202116672. Epub 2022 Jan 25.
8
Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases.
Theranostics. 2021 Apr 3;11(12):5863-5875. doi: 10.7150/thno.53615. eCollection 2021.
9
Asparaginyl Ligases: New Enzymes for the Protein Engineer's Toolbox.
Chembiochem. 2021 Jun 15;22(12):2079-2086. doi: 10.1002/cbic.202100071. Epub 2021 Apr 12.
10
On the design of a constitutively active peptide asparaginyl ligase for facile protein conjugation.
FEBS Open Bio. 2023 Jun;13(6):1095-1106. doi: 10.1002/2211-5463.13575. Epub 2023 Mar 28.

引用本文的文献

1
Asparaginyl Ligases with Engineered Substrate Specificity for Controlled, Sequential Transpeptidation Reactions.
J Am Chem Soc. 2025 Jun 25;147(25):21824-21831. doi: 10.1021/jacs.5c04693. Epub 2025 Jun 11.
2
Highly Efficient Transpeptidase-Catalyzed Isopeptide Ligation.
J Am Chem Soc. 2025 Jan 8;147(1):557-565. doi: 10.1021/jacs.4c11964. Epub 2024 Dec 23.

本文引用的文献

1
Nature-inspired protein ligation and its applications.
Nat Rev Chem. 2023 Apr;7(4):234-255. doi: 10.1038/s41570-023-00468-z. Epub 2023 Feb 21.
2
A Cascade Enzymatic Reaction Scheme for Irreversible Transpeptidative Protein Ligation.
J Am Chem Soc. 2023 Mar 29;145(12):6838-6844. doi: 10.1021/jacs.2c13628. Epub 2023 Mar 16.
3
Site-Specific Protein Labeling and Generation of Defined Ubiquitin-Protein Conjugates Using an Asparaginyl Endopeptidase.
J Am Chem Soc. 2022 Jul 27;144(29):13118-13126. doi: 10.1021/jacs.2c02191. Epub 2022 Jul 18.
4
AEP1-mediated PNA-protein conjugation enables erasable imaging of membrane proteins.
Chem Commun (Camb). 2022 Jul 26;58(60):8448-8451. doi: 10.1039/d2cc02153f.
5
Enzymatic C-to-C Protein Ligation.
Angew Chem Int Ed Engl. 2022 Mar 7;61(11):e202116672. doi: 10.1002/anie.202116672. Epub 2022 Jan 25.
6
Enzymatic C-Terminal Protein Engineering with Amines.
J Am Chem Soc. 2021 Nov 24;143(46):19498-19504. doi: 10.1021/jacs.1c08976. Epub 2021 Nov 11.
7
pH-Controlled Protein Orthogonal Ligation Using Asparaginyl Peptide Ligases.
J Am Chem Soc. 2021 Jun 16;143(23):8704-8712. doi: 10.1021/jacs.1c02638. Epub 2021 Jun 7.
8
Discovery, characterization and engineering of ligases for amide synthesis.
Nature. 2021 May;593(7859):391-398. doi: 10.1038/s41586-021-03447-w. Epub 2021 May 19.
9
Asparaginyl Ligases: New Enzymes for the Protein Engineer's Toolbox.
Chembiochem. 2021 Jun 15;22(12):2079-2086. doi: 10.1002/cbic.202100071. Epub 2021 Apr 12.
10
Improved Asparaginyl-Ligase-Catalyzed Transpeptidation via Selective Nucleophile Quenching.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4004-4008. doi: 10.1002/anie.202013584. Epub 2020 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验