Suppr超能文献

针对大规模铁氮杂酞菁催化剂中氧还原反应,对pH-场耦合微动力学模型进行基准测试。

Benchmarking pH-field coupled microkinetic modeling against oxygen reduction in large-scale Fe-azaphthalocyanine catalysts.

作者信息

Zhang Di, Hirai Yutaro, Nakamura Koki, Ito Koju, Matsuo Yasutaka, Ishibashi Kosuke, Hashimoto Yusuke, Yabu Hiroshi, Li Hao

机构信息

Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-0811 Japan

AZUL Energy, Inc. 1-9-1, Ichibancho, Aoba-Ku Sendai 980-0811 Japan.

出版信息

Chem Sci. 2024 Mar 15;15(14):5123-5132. doi: 10.1039/d4sc00473f. eCollection 2024 Apr 3.

Abstract

Molecular metal-nitrogen-carbon (M-N-C) catalysts with well-defined structures and metal-coordination environments exhibit distinct structural properties and excellent electrocatalytic performance, notably in the oxygen reduction reaction (ORR) for fuel cells. Metal-doped azaphthalocyanine (AzPc) catalysts, a variant of molecular M-N-Cs, can be structured with unique long stretching functional groups, which make them have a geometry far from a two-dimensional geometry when loaded onto a carbon substrate, similar to a "dancer" on a stage, and this significantly affects their ORR efficiency at different pH levels. However, linking structural properties to performance is challenging, requiring comprehensive microkinetic modeling, substantial computational resources, and a combination of theoretical and experimental validation. Herein, we conducted pH-dependent microkinetic modeling based upon calculations and electric field-pH coupled simulations to analyze the pH-dependent ORR performance of carbon-supported Fe-AzPcs with varying surrounding functional groups. In particular, this study incorporates large molecular structures with complex long-chain "dancing patterns", each featuring >650 atoms, to analyze their performance in the ORR. Comparison with experimental ORR data shows that pH-field coupled microkinetic modeling closely matches the observed ORR efficiency at various pH levels in Fe-AzPc catalysts. Our results also indicate that assessing charge transfer at the Fe-site, where the Fe atom typically loses around 1.3 electrons, could be a practical approach for screening appropriate surrounding functional groups for the ORR. This study provides a direct benchmarking analysis for the microkinetic model to identify effective M-N-C catalysts for the ORR under various pH conditions.

摘要

具有明确结构和金属配位环境的分子金属 - 氮 - 碳(M - N - C)催化剂表现出独特的结构性质和优异的电催化性能,尤其是在燃料电池的氧还原反应(ORR)中。金属掺杂氮杂酞菁(AzPc)催化剂作为分子M - N - C的一种变体,可以构建具有独特长链伸展官能团的结构,当负载到碳载体上时,其几何形状与二维几何形状相差甚远,类似于舞台上的“舞者”,这显著影响了它们在不同pH水平下的ORR效率。然而,将结构性质与性能联系起来具有挑战性,需要全面的微观动力学建模、大量的计算资源以及理论和实验验证的结合。在此,我们基于计算和电场 - pH耦合模拟进行了pH依赖的微观动力学建模,以分析具有不同周围官能团的碳载Fe - AzPcs的pH依赖的ORR性能。特别是,本研究纳入了具有复杂长链“舞动模式”的大分子结构,每个结构包含超过650个原子,以分析它们在ORR中的性能。与实验ORR数据的比较表明,pH - 场耦合微观动力学建模与Fe - AzPc催化剂在各种pH水平下观察到的ORR效率密切匹配。我们的结果还表明,评估Fe位点处的电荷转移(Fe原子通常在此处失去约1.3个电子)可能是筛选适合ORR的周围官能团的实用方法。本研究为微观动力学模型提供了直接的基准分析,以识别在各种pH条件下用于ORR的有效M - N - C催化剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6505/10988579/8744ad1df38f/d4sc00473f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验