Suppr超能文献

利用神经网络开发预测模型,帮助预测手术后患有晚期前列腺癌患者的预后。

Develop prediction model to help forecast advanced prostate cancer patients' prognosis after surgery using neural network.

机构信息

Department of Clinical Laboratory, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China.

Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.

出版信息

Front Endocrinol (Lausanne). 2024 Mar 21;15:1293953. doi: 10.3389/fendo.2024.1293953. eCollection 2024.

Abstract

BACKGROUND

The effect of surgery on advanced prostate cancer (PC) is unclear and predictive model for postoperative survival is lacking yet.

METHODS

We investigate the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) database, to collect clinical features of advanced PC patients. According to clinical experience, age, race, grade, pathology, T, N, M, stage, size, regional nodes positive, regional nodes examined, surgery, radiotherapy, chemotherapy, history of malignancy, clinical Gleason score (composed of needle core biopsy or transurethral resection of the prostate specimens), pathological Gleason score (composed of prostatectomy specimens) and prostate-specific antigen (PSA) are the potential predictive variables. All samples are divided into train cohort (70% of total, for model training) and test cohort (30% of total, for model validation) by random sampling. We then develop neural network to predict advanced PC patients' overall. Area under receiver operating characteristic curve (AUC) is used to evaluate model's performance.

RESULTS

6380 patients, diagnosed with advanced (stage III-IV) prostate cancer and receiving surgery, have been included. The model using all collected clinical features as predictors and based on neural network algorithm performs best, which scores 0.7058 AUC (95% CIs, 0.7021-0.7068) in train cohort and 0.6925 AUC (95% CIs, 0.6906-0.6956) in test cohort. We then package it into a Windows 64-bit software.

CONCLUSION

Patients with advanced prostate cancer may benefit from surgery. In order to forecast their overall survival, we first build a clinical features-based prognostic model. This model is accuracy and may offer some reference on clinical decision making.

摘要

背景

手术治疗晚期前列腺癌(PC)的效果尚不清楚,也缺乏术后生存的预测模型。

方法

我们研究了美国国家癌症研究所的监测、流行病学和最终结果(SEER)数据库,以收集晚期 PC 患者的临床特征。根据临床经验,年龄、种族、分级、病理、T、N、M、分期、大小、局部淋巴结阳性、局部淋巴结检查、手术、放疗、化疗、恶性肿瘤史、临床 Gleason 评分(由针芯活检或经尿道前列腺切除术标本组成)、病理 Gleason 评分(由前列腺切除术标本组成)和前列腺特异性抗原(PSA)是潜在的预测变量。所有样本通过随机抽样分为训练队列(总样本的 70%,用于模型训练)和测试队列(总样本的 30%,用于模型验证)。然后,我们开发神经网络来预测晚期 PC 患者的总体生存率。接受者操作特征曲线下面积(AUC)用于评估模型的性能。

结果

共纳入 6380 例接受手术治疗的晚期(III-IV 期)前列腺癌患者。该模型使用所有收集的临床特征作为预测因子,并基于神经网络算法,在训练队列中得分为 0.7058 AUC(95%CI,0.7021-0.7068),在测试队列中得分为 0.6925 AUC(95%CI,0.6906-0.6956),表现最佳。我们随后将其打包成一个 Windows 64 位软件。

结论

晚期前列腺癌患者可能从手术中获益。为了预测他们的总生存率,我们首先建立了一个基于临床特征的预后模型。该模型具有较高的准确性,可为临床决策提供一些参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f292/10991752/ba601e0ccda6/fendo-15-1293953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验