Suppr超能文献

用于涉及纵向响应和解释变量的聚类分析的贝叶斯轮廓回归

Bayesian profile regression for clustering analysis involving a longitudinal response and explanatory variables.

作者信息

Rouanet Anaïs, Johnson Rob, Strauss Magdalena, Richardson Sylvia, Tom Brian D, White Simon R, Kirk Paul D W

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, U.K.

EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.

出版信息

Methodology (Gott). 2024 Mar 11;73(2):314-339. doi: 10.1093/jrsssc/qlad097. Epub 2023 Nov 8.

Abstract

The identification of sets of co-regulated genes that share a common function is a key question of modern genomics. Bayesian profile regression is a semi-supervised mixture modelling approach that makes use of a response to guide inference toward relevant clusterings. Previous applications of profile regression have considered univariate continuous, categorical, and count outcomes. In this work, we extend Bayesian profile regression to cases where the outcome is longitudinal (or multivariate continuous) and provide PReMiuMlongi, an updated version of PReMiuM, the R package for profile regression. We consider multivariate normal and Gaussian process regression response models and provide proof of principle applications to four simulation studies. The model is applied on budding yeast data to identify groups of genes co-regulated during the cell cycle. We identify 4 distinct groups of genes associated with specific patterns of gene expression trajectories, along with the bound transcriptional factors, likely involved in their co-regulation process.

摘要

识别具有共同功能的共调控基因集是现代基因组学的一个关键问题。贝叶斯轮廓回归是一种半监督混合建模方法,它利用响应来引导对相关聚类的推断。轮廓回归以前的应用考虑了单变量连续、分类和计数结果。在这项工作中,我们将贝叶斯轮廓回归扩展到结果为纵向(或多变量连续)的情况,并提供了PReMiuMlongi,它是PReMiuM(用于轮廓回归的R包)的更新版本。我们考虑多变量正态和高斯过程回归响应模型,并为四个模拟研究提供原理证明应用。该模型应用于芽殖酵母数据,以识别细胞周期中共同调控的基因群。我们识别出与基因表达轨迹的特定模式相关的4个不同的基因群,以及可能参与其共同调控过程的结合转录因子。

相似文献

4
Consensus clustering for Bayesian mixture models.贝叶斯混合模型的一致性聚类。
BMC Bioinformatics. 2022 Jul 21;23(1):290. doi: 10.1186/s12859-022-04830-8.
6
Regulatory motif finding by logic regression.通过逻辑回归进行调控基序发现。
Bioinformatics. 2004 Nov 1;20(16):2799-811. doi: 10.1093/bioinformatics/bth333. Epub 2004 May 27.
8
Bayesian consensus clustering for multivariate longitudinal data.贝叶斯共识聚类分析多元纵向数据。
Stat Med. 2022 Jan 15;41(1):108-127. doi: 10.1002/sim.9225. Epub 2021 Oct 20.
10
Bayesian mixture model based clustering of replicated microarray data.基于贝叶斯混合模型的重复微阵列数据聚类
Bioinformatics. 2004 May 22;20(8):1222-32. doi: 10.1093/bioinformatics/bth068. Epub 2004 Feb 10.

本文引用的文献

3
Pseudotime estimation: deconfounding single cell time series.伪时间估计:消除单细胞时间序列的混杂因素
Bioinformatics. 2016 Oct 1;32(19):2973-80. doi: 10.1093/bioinformatics/btw372. Epub 2016 Jun 17.
6
A graph theoretical approach to data fusion.一种用于数据融合的图论方法。
Stat Appl Genet Mol Biol. 2016 Apr;15(2):107-22. doi: 10.1515/sagmb-2016-0016.
7
Iterative Discovery of Multiple AlternativeClustering Views.迭代发现多种可选聚类视图。
IEEE Trans Pattern Anal Mach Intell. 2014 Jul;36(7):1340-53. doi: 10.1109/TPAMI.2013.180.
10
Bayesian correlated clustering to integrate multiple datasets.贝叶斯相关聚类分析整合多数据集。
Bioinformatics. 2012 Dec 15;28(24):3290-7. doi: 10.1093/bioinformatics/bts595. Epub 2012 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验