Suppr超能文献

使用无限高斯过程混合模型对基因表达时间序列数据进行聚类。

Clustering gene expression time series data using an infinite Gaussian process mixture model.

机构信息

Computational Biology & Bioinformatics Graduate Program, Duke University, Durham, North Carolina, United States of America.

Center for Genomic & Computational Biology, Duke University, Durham, North Carolina, United States of America.

出版信息

PLoS Comput Biol. 2018 Jan 16;14(1):e1005896. doi: 10.1371/journal.pcbi.1005896. eCollection 2018 Jan.

Abstract

Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

摘要

转录组时间序列表达谱分析用于描述细胞对环境扰动的反应。分析转录反应数据的第一步通常是对具有相似反应的基因进行聚类。在这里,我们提出了一种基于非参数模型的方法,Dirichlet 过程高斯过程混合模型(DPGP),它联合使用 Dirichlet 过程和高斯过程来对数据簇和时间依赖性进行建模。我们使用数百个模拟数据集比较了 DPGP 与最先进方法的准确性。为了进一步测试我们的方法,我们将 DPGP 应用于发表的微生物模型生物暴露于应激的微阵列数据和暴露于糖皮质激素地塞米松的人类细胞系的新型 RNA-seq 数据。我们通过检查局部转录因子结合和组蛋白修饰来验证我们的聚类。我们的结果表明,联合建模聚类数和时间依赖性可以揭示共享的调节机制。DPGP 软件可在 https://github.com/PrincetonUniversity/DP_GP_cluster 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b08/5786324/2fe77e437835/pcbi.1005896.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验