基于深度学习的 3D T1 SPACE 血管壁成像重建可提高图像质量并缩短扫描时间:初步研究。

Deep Learning-Based Reconstruction of 3D T1 SPACE Vessel Wall Imaging Provides Improved Image Quality with Reduced Scan Times: A Preliminary Study.

机构信息

From the Department of Radiology (G.B., S.A.M., D.F.B., J.C.B., B.C.R., I.T.M., F.E.D.), Mayo Clinic, Rochester, Minnesota.

Siemens Healthineers AG (P.K., M.D.N.), Forchheim, Germany.

出版信息

AJNR Am J Neuroradiol. 2024 Nov 7;45(11):1655-1660. doi: 10.3174/ajnr.A8382.

Abstract

BACKGROUND AND PURPOSE

Intracranial vessel wall imaging is technically challenging to implement, given the simultaneous requirements of high spatial resolution, excellent blood and CSF signal suppression, and clinically acceptable gradient times. Herein, we present our preliminary findings on the evaluation of a deep learning-optimized sequence using T1-weighted imaging.

MATERIALS AND METHODS

Clinical and optimized deep learning-based image reconstruction T1 3D Sampling Perfection with Application optimized Contrast using different flip angle Evolution (SPACE) were evaluated, comparing noncontrast sequences in 10 healthy controls and postcontrast sequences in 5 consecutive patients. Images were reviewed on a Likert-like scale by 4 fellowship-trained neuroradiologists. Scores (range, 1-4) were separately assigned for 11 vessel segments in terms of vessel wall and lumen delineation. Additionally, images were evaluated in terms of overall background noise, image sharpness, and homogeneous CSF signal. Segment-wise scores were compared using paired samples tests.

RESULTS

The scan time for the clinical and deep learning-based image reconstruction sequences were 7:26 minutes and 5:23 minutes respectively. Deep learning-based image reconstruction images showed consistently higher wall signal and lumen visualization scores, with the differences being statistically significant in most vessel segments on both pre- and postcontrast images. Deep learning-based image reconstruction had lower background noise, higher image sharpness, and uniform CSF signal. Depiction of intracranial pathologies was better or similar on the deep learning-based image reconstruction.

CONCLUSIONS

Our preliminary findings suggest that deep learning-based image reconstruction-optimized intracranial vessel wall imaging sequences may be helpful in achieving shorter gradient times with improved vessel wall visualization and overall image quality. These improvements may help with wider adoption of intracranial vessel wall imaging in clinical practice and should be further validated on a larger cohort.

摘要

背景与目的

由于同时需要高空间分辨率、出色的血液和 CSF 信号抑制以及临床可接受的梯度时间,颅内血管壁成像在技术上具有挑战性。在此,我们介绍了使用 T1 加权成像评估深度学习优化序列的初步结果。

材料与方法

评估了临床和基于深度学习的优化图像重建 T1 3D 采样完美应用优化对比使用不同翻转角演化(SPACE)序列,比较了 10 例健康对照者的非对比序列和 5 例连续患者的对比后序列。4 名 fellowship培训的神经放射科医生使用类似李克特量表对图像进行了回顾。根据血管壁和管腔描绘,分别为 11 个血管段分配了评分(范围 1-4)。此外,还根据总体背景噪声、图像锐度和均匀 CSF 信号对图像进行了评估。使用配对样本 t 检验比较了分段评分。

结果

临床和基于深度学习的图像重建序列的扫描时间分别为 7:26 分钟和 5:23 分钟。基于深度学习的图像重建图像显示出一致更高的壁信号和管腔可视化评分,在前和对比后图像的大多数血管段上差异具有统计学意义。基于深度学习的图像重建具有更低的背景噪声、更高的图像锐度和均匀的 CSF 信号。颅内病变的描绘在基于深度学习的图像重建上更好或相似。

结论

我们的初步发现表明,基于深度学习的图像重建优化的颅内血管壁成像序列可能有助于实现更短的梯度时间,同时改善血管壁可视化和整体图像质量。这些改进可能有助于更广泛地在临床实践中采用颅内血管壁成像,并应在更大的队列中进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索