Université Paris-Saclay, Institute of Molecular Sciences of Orsay, French National Center for Scientific Research, 91405, Orsay, France.
Université Paris-Saclay, Institut Galien Paris-Saclay, French National Center for Scientific Research, 91400, Orsay, France.
Drug Deliv Transl Res. 2024 Aug;14(8):2188-2202. doi: 10.1007/s13346-024-01578-x. Epub 2024 Apr 5.
Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs' in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein's structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA's secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.
纳米粒子(NPs)作为药物输送系统不断取得突破,因为它们提供了许多优于游离治疗剂的优势。然而,由于对 NPs 与生物分子(尤其是血液蛋白)之间相互作用的了解不足,阻碍了 NP 在临床上的应用。纳米-生物相互作用决定了 NPs 的体内命运、疗效和免疫毒性,可能会改变蛋白质的功能。为了满足对纳米-生物相互作用研究的日益增长的需求,本研究从两个关键方面提供了系统的理解:(i)蛋白质冠(PC)的形成和(ii)NP 对蛋白质结构和稳定性的诱导修饰。本研究采用正交技术相结合的方法,以人血清白蛋白(HSA)为模型蛋白,开发了一种分析纳米-生物相互作用的定量和定性方面的方法。通过液相色谱-质谱法和毛细管区带电泳(CZE)对蛋白质进行定量分析,阐明了吸附蛋白质的数量和稳定性。CZE 进一步揭示了 HSA 形式(天然、糖化 HSA 和半胱氨酸化 HSA)的定性信息,而同步辐射圆二色性(SRCD)则能够分析 HSA 的二级结构和热稳定性。对 NP 核(有机与杂化)和壳(带或不带聚乙二醇(PEG))的比较研究揭示了影响纳米-生物相互作用的关键因素。基于聚(乳酸-共-乙醇酸)(PLGA)的聚合物 NPs 和基于金属-有机框架(nanoMOFs)的杂化 NPs 表现出不同的 HSA 吸附特征。PLGA NPs 具有排斥蛋白质的特性,同时诱导 HSA 的结构修饰。相比之下,HSA 对 nanoMOFs 具有高亲和力,形成改变蛋白质结构的 PC。PEG 化对两种类型的 NPs 都获得了屏蔽效应,既避免了 PC 的形成,又避免了未结合 HSA 结构的改变。