Suppr超能文献

多维空间中的分子动力学解释了突变如何影响新霉素与核糖开关的结合途径。

Molecular dynamics in multidimensional space explains how mutations affect the association path of neomycin to a riboswitch.

机构信息

Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.

Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland.

出版信息

Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2317197121. doi: 10.1073/pnas.2317197121. Epub 2024 Apr 5.

Abstract

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.

摘要

Riboswitches 是一种信使 RNA(mRNA)片段,能够结合特定的小分子来调节基因表达。一个合成的 N1 riboswitch,插入到酵母 mRNA 中,可以控制报告基因的翻译,以响应新霉素。然而,它的调节活性对单个点的 RNA 突变很敏感,即使是远离新霉素结合位点的突变。虽然新霉素与 N1 及其变体的结合途径仍然未知,但最近的荧光动力学实验表明,这是一个由构象选择驱动的两步过程。这就提出了一个问题,即哪个步骤受到突变的影响。为了解决这个问题,我们对 N1 和 U14C、U14C[Formula: see text]、U15A 和 A17G 突变体进行了全原子二维 replica-exchange 分子动力学模拟,以确保对 RNA 和新霉素进行广泛的构象采样。获得的新霉素结合和结合途径,以及多维自由能图谱,揭示了一个两步结合机制,包括构象选择和诱导契合。新霉素在识别出核糖开关发夹中的稳定上茎和 U 型转弯基序后,与预先形成的 N1 构象结合。然而,对于每个突变体,新霉素在结合位点的定位发生在不同的 RNA-新霉素距离处,这可能解释了它们不同的调节活性。随后的诱导契合是由新霉素的 N3 氨基与 RNA 的相互作用引起的,导致 G9 骨架重新排列。在 A17G 突变体中,与 N1 相比,关键的 C6-A17/G17 堆积在更近的 RNA-新霉素距离处形成。这些发现与实验结果一致,并阐明了为什么 A17G 突变会降低和 U15A 增强 N1 对新霉素的活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7375/11009640/59b3278d91d6/pnas.2317197121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验