Lu Xiaoyi, Sun Kexuan, Wang Yaohua, Liu Chang, Meng Yuanyuan, Lang Xiting, Xiao Chuanxiao, Tian Ruijia, Song Zhenhua, Zhu Zewei, Yang Ming, Bai Yang, Ge Ziyi
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
School of Materials Science and Chemical Engineering Ningbo University, Ningbo, 315211, China.
Adv Mater. 2024 Jun;36(25):e2400852. doi: 10.1002/adma.202400852. Epub 2024 Apr 15.
Despite rapid advancements in the photovoltaic efficiencies of perovskite solar cells (PSCs), their operational stability remains a significant challenge for commercialization. This instability mainly arises from light-induced halide ion migration and subsequent oxidation into iodine (I). The situation is exacerbated when considering the heat effects at elevated temperatures, leading to the volatilization of I and resulting in irreversible device degradation. Mercaptoethylammonium iodide (ESAI) is thus incorporated into perovskite as an additive to inhibit the oxidation of iodide anion (I) and the light-induced degradation pathway of FAPbI→FAI+PbI. Additionally, the formation of a thiol-disulfide/I-I redox pair within the perovskite film provides a dynamic mechanism for the continuous reduction of I under light and thermal stresses, facilitating the healing of iodine-induced degradations. This approach significantly enhances the operational stability of PSCs. Under the ISOS-L-3 testing protocol (maximum power point (MPP) tracking in an environment with relative humidity of ≈50% at ≈65 °C), the treated PSCs maintain 97% of their original power conversion efficieney (PCE) after 300 h of aging. In contrast, control devices exhibit almost complete degradation, primarily due to rapid thermal-induced I volatilization. These results demonstrate a promising strategy to overcome critical stability challenges in PSCs, particularly in scenarios involving thermal effects.
尽管钙钛矿太阳能电池(PSC)的光伏效率取得了快速进展,但其运行稳定性仍然是商业化面临的重大挑战。这种不稳定性主要源于光致卤离子迁移以及随后氧化成碘(I)。考虑到高温下的热效应时,情况会更加恶化,导致碘挥发并造成器件不可逆转的退化。因此,将巯基乙铵碘化物(ESAI)作为添加剂掺入钙钛矿中,以抑制碘阴离子(I)的氧化以及FAPbI→FAI+PbI的光致降解途径。此外,在钙钛矿薄膜内形成硫醇-二硫化物/I-I氧化还原对,为在光照和热应力下持续还原碘提供了一种动态机制,有助于修复碘诱导的降解。这种方法显著提高了PSC的运行稳定性。在ISOS-L-3测试协议下(在约65°C、相对湿度约50%的环境中进行最大功率点(MPP)跟踪),经过处理的PSC在老化300小时后仍保持其原始功率转换效率(PCE)的97%。相比之下,对照器件几乎完全退化,主要是由于热诱导碘的快速挥发。这些结果证明了一种有前景的策略,可克服PSC中的关键稳定性挑战,特别是在涉及热效应的情况下。